/* Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * The name of Contributor may not be used to endorse or * promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * Copyright© 2009, Liu Liu All rights reserved. * * OpenCV functions for MSER extraction * * 1. there are two different implementation of MSER, one for grey image, one for color image * 2. the grey image algorithm is taken from: Linear Time Maximally Stable Extremal Regions; * the paper claims to be faster than union-find method; * it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop. * 3. the color image algorithm is taken from: Maximally Stable Colour Regions for Recognition and Match; * it should be much slower than grey image method ( 3~4 times ); * the chi_table.h file is taken directly from paper's source code which is distributed under GPL. * 4. though the name is *contours*, the result actually is a list of point set. */ #include "precomp.hpp" namespace cv { const int TABLE_SIZE = 400; static double chitab3[]={0, 0.0150057, 0.0239478, 0.0315227, 0.0383427, 0.0446605, 0.0506115, 0.0562786, 0.0617174, 0.0669672, 0.0720573, 0.0770099, 0.081843, 0.0865705, 0.0912043, 0.0957541, 0.100228, 0.104633, 0.108976, 0.113261, 0.117493, 0.121676, 0.125814, 0.12991, 0.133967, 0.137987, 0.141974, 0.145929, 0.149853, 0.15375, 0.15762, 0.161466, 0.165287, 0.169087, 0.172866, 0.176625, 0.180365, 0.184088, 0.187794, 0.191483, 0.195158, 0.198819, 0.202466, 0.2061, 0.209722, 0.213332, 0.216932, 0.220521, 0.2241, 0.22767, 0.231231, 0.234783, 0.238328, 0.241865, 0.245395, 0.248918, 0.252435, 0.255947, 0.259452, 0.262952, 0.266448, 0.269939, 0.273425, 0.276908, 0.280386, 0.283862, 0.287334, 0.290803, 0.29427, 0.297734, 0.301197, 0.304657, 0.308115, 0.311573, 0.315028, 0.318483, 0.321937, 0.32539, 0.328843, 0.332296, 0.335749, 0.339201, 0.342654, 0.346108, 0.349562, 0.353017, 0.356473, 0.35993, 0.363389, 0.366849, 0.37031, 0.373774, 0.377239, 0.380706, 0.384176, 0.387648, 0.391123, 0.3946, 0.39808, 0.401563, 0.405049, 0.408539, 0.412032, 0.415528, 0.419028, 0.422531, 0.426039, 0.429551, 0.433066, 0.436586, 0.440111, 0.44364, 0.447173, 0.450712, 0.454255, 0.457803, 0.461356, 0.464915, 0.468479, 0.472049, 0.475624, 0.479205, 0.482792, 0.486384, 0.489983, 0.493588, 0.4972, 0.500818, 0.504442, 0.508073, 0.511711, 0.515356, 0.519008, 0.522667, 0.526334, 0.530008, 0.533689, 0.537378, 0.541075, 0.54478, 0.548492, 0.552213, 0.555942, 0.55968, 0.563425, 0.56718, 0.570943, 0.574715, 0.578497, 0.582287, 0.586086, 0.589895, 0.593713, 0.597541, 0.601379, 0.605227, 0.609084, 0.612952, 0.61683, 0.620718, 0.624617, 0.628526, 0.632447, 0.636378, 0.64032, 0.644274, 0.648239, 0.652215, 0.656203, 0.660203, 0.664215, 0.668238, 0.672274, 0.676323, 0.680384, 0.684457, 0.688543, 0.692643, 0.696755, 0.700881, 0.70502, 0.709172, 0.713339, 0.717519, 0.721714, 0.725922, 0.730145, 0.734383, 0.738636, 0.742903, 0.747185, 0.751483, 0.755796, 0.760125, 0.76447, 0.768831, 0.773208, 0.777601, 0.782011, 0.786438, 0.790882, 0.795343, 0.799821, 0.804318, 0.808831, 0.813363, 0.817913, 0.822482, 0.827069, 0.831676, 0.836301, 0.840946, 0.84561, 0.850295, 0.854999, 0.859724, 0.864469, 0.869235, 0.874022, 0.878831, 0.883661, 0.888513, 0.893387, 0.898284, 0.903204, 0.908146, 0.913112, 0.918101, 0.923114, 0.928152, 0.933214, 0.938301, 0.943413, 0.94855, 0.953713, 0.958903, 0.964119, 0.969361, 0.974631, 0.979929, 0.985254, 0.990608, 0.99599, 1.0014, 1.00684, 1.01231, 1.01781, 1.02335, 1.02891, 1.0345, 1.04013, 1.04579, 1.05148, 1.05721, 1.06296, 1.06876, 1.07459, 1.08045, 1.08635, 1.09228, 1.09826, 1.10427, 1.11032, 1.1164, 1.12253, 1.1287, 1.1349, 1.14115, 1.14744, 1.15377, 1.16015, 1.16656, 1.17303, 1.17954, 1.18609, 1.19269, 1.19934, 1.20603, 1.21278, 1.21958, 1.22642, 1.23332, 1.24027, 1.24727, 1.25433, 1.26144, 1.26861, 1.27584, 1.28312, 1.29047, 1.29787, 1.30534, 1.31287, 1.32046, 1.32812, 1.33585, 1.34364, 1.3515, 1.35943, 1.36744, 1.37551, 1.38367, 1.39189, 1.4002, 1.40859, 1.41705, 1.42561, 1.43424, 1.44296, 1.45177, 1.46068, 1.46967, 1.47876, 1.48795, 1.49723, 1.50662, 1.51611, 1.52571, 1.53541, 1.54523, 1.55517, 1.56522, 1.57539, 1.58568, 1.59611, 1.60666, 1.61735, 1.62817, 1.63914, 1.65025, 1.66152, 1.67293, 1.68451, 1.69625, 1.70815, 1.72023, 1.73249, 1.74494, 1.75757, 1.77041, 1.78344, 1.79669, 1.81016, 1.82385, 1.83777, 1.85194, 1.86635, 1.88103, 1.89598, 1.91121, 1.92674, 1.94257, 1.95871, 1.97519, 1.99201, 2.0092, 2.02676, 2.04471, 2.06309, 2.08189, 2.10115, 2.12089, 2.14114, 2.16192, 2.18326, 2.2052, 2.22777, 2.25101, 2.27496, 2.29966, 2.32518, 2.35156, 2.37886, 2.40717, 2.43655, 2.46709, 2.49889, 2.53206, 2.56673, 2.60305, 2.64117, 2.6813, 2.72367, 2.76854, 2.81623, 2.86714, 2.92173, 2.98059, 3.04446, 3.1143, 3.19135, 3.27731, 3.37455, 3.48653, 3.61862, 3.77982, 3.98692, 4.2776, 4.77167, 133.333 }; typedef struct LinkedPoint { struct LinkedPoint* prev; struct LinkedPoint* next; Point pt; } LinkedPoint; // the history of region grown typedef struct MSERGrowHistory { struct MSERGrowHistory* shortcut; struct MSERGrowHistory* child; int stable; // when it ever stabled before, record the size int val; int size; } MSERGrowHistory; typedef struct MSERConnectedComp { LinkedPoint* head; LinkedPoint* tail; MSERGrowHistory* history; unsigned long grey_level; int size; int dvar; // the derivative of last var float var; // the current variation (most time is the variation of one-step back) } MSERConnectedComp; // Linear Time MSER claims by using bsf can get performance gain, here is the implementation // however it seems that will not do any good in real world test inline void _bitset(unsigned long * a, unsigned long b) { *a |= 1<size = 0; comp->var = 0; comp->dvar = 1; comp->history = NULL; } // add history of size to a connected component static void MSERNewHistory( MSERConnectedComp* comp, MSERGrowHistory* history ) { history->child = history; if ( NULL == comp->history ) { history->shortcut = history; history->stable = 0; } else { comp->history->child = history; history->shortcut = comp->history->shortcut; history->stable = comp->history->stable; } history->val = comp->grey_level; history->size = comp->size; comp->history = history; } // merging two connected component static void MSERMergeComp( MSERConnectedComp* comp1, MSERConnectedComp* comp2, MSERConnectedComp* comp, MSERGrowHistory* history ) { LinkedPoint* head; LinkedPoint* tail; comp->grey_level = comp2->grey_level; history->child = history; // select the winner by size if ( comp1->size >= comp2->size ) { if ( NULL == comp1->history ) { history->shortcut = history; history->stable = 0; } else { comp1->history->child = history; history->shortcut = comp1->history->shortcut; history->stable = comp1->history->stable; } if ( NULL != comp2->history && comp2->history->stable > history->stable ) history->stable = comp2->history->stable; history->val = comp1->grey_level; history->size = comp1->size; // put comp1 to history comp->var = comp1->var; comp->dvar = comp1->dvar; if ( comp1->size > 0 && comp2->size > 0 ) { comp1->tail->next = comp2->head; comp2->head->prev = comp1->tail; } head = ( comp1->size > 0 ) ? comp1->head : comp2->head; tail = ( comp2->size > 0 ) ? comp2->tail : comp1->tail; // always made the newly added in the last of the pixel list (comp1 ... comp2) } else { if ( NULL == comp2->history ) { history->shortcut = history; history->stable = 0; } else { comp2->history->child = history; history->shortcut = comp2->history->shortcut; history->stable = comp2->history->stable; } if ( NULL != comp1->history && comp1->history->stable > history->stable ) history->stable = comp1->history->stable; history->val = comp2->grey_level; history->size = comp2->size; // put comp2 to history comp->var = comp2->var; comp->dvar = comp2->dvar; if ( comp1->size > 0 && comp2->size > 0 ) { comp2->tail->next = comp1->head; comp1->head->prev = comp2->tail; } head = ( comp2->size > 0 ) ? comp2->head : comp1->head; tail = ( comp1->size > 0 ) ? comp1->tail : comp2->tail; // always made the newly added in the last of the pixel list (comp2 ... comp1) } comp->head = head; comp->tail = tail; comp->history = history; comp->size = comp1->size + comp2->size; } static float MSERVariationCalc( MSERConnectedComp* comp, int delta ) { MSERGrowHistory* history = comp->history; int val = comp->grey_level; if ( NULL != history ) { MSERGrowHistory* shortcut = history->shortcut; while ( shortcut != shortcut->shortcut && shortcut->val + delta > val ) shortcut = shortcut->shortcut; MSERGrowHistory* child = shortcut->child; while ( child != child->child && child->val + delta <= val ) { shortcut = child; child = child->child; } // get the position of history where the shortcut->val <= delta+val and shortcut->child->val >= delta+val history->shortcut = shortcut; return (float)(comp->size-shortcut->size)/(float)shortcut->size; // here is a small modification of MSER where cal ||R_{i}-R_{i-delta}||/||R_{i-delta}|| // in standard MSER, cal ||R_{i+delta}-R_{i-delta}||/||R_{i}|| // my calculation is simpler and much easier to implement } return 1.; } static bool MSERStableCheck( MSERConnectedComp* comp, MSERParams params ) { // tricky part: it actually check the stablity of one-step back if ( comp->history == NULL || comp->history->size <= params.minArea || comp->history->size >= params.maxArea ) return 0; float div = (float)(comp->history->size-comp->history->stable)/(float)comp->history->size; float var = MSERVariationCalc( comp, params.delta ); int dvar = ( comp->var < var || (unsigned long)(comp->history->val + 1) < comp->grey_level ); int stable = ( dvar && !comp->dvar && comp->var < params.maxVariation && div > params.minDiversity ); comp->var = var; comp->dvar = dvar; if ( stable ) comp->history->stable = comp->history->size; return stable != 0; } // add a pixel to the pixel list static void accumulateMSERComp( MSERConnectedComp* comp, LinkedPoint* point ) { if ( comp->size > 0 ) { point->prev = comp->tail; comp->tail->next = point; point->next = NULL; } else { point->prev = NULL; point->next = NULL; comp->head = point; } comp->tail = point; comp->size++; } // convert the point set to CvSeq static CvContour* MSERToContour( MSERConnectedComp* comp, CvMemStorage* storage ) { CvSeq* _contour = cvCreateSeq( CV_SEQ_KIND_GENERIC|CV_32SC2, sizeof(CvContour), sizeof(CvPoint), storage ); CvContour* contour = (CvContour*)_contour; cvSeqPushMulti( _contour, 0, comp->history->size ); LinkedPoint* lpt = comp->head; for ( int i = 0; i < comp->history->size; i++ ) { CvPoint* pt = CV_GET_SEQ_ELEM( CvPoint, _contour, i ); pt->x = lpt->pt.x; pt->y = lpt->pt.y; lpt = lpt->next; } cvBoundingRect( contour ); return contour; } // to preprocess src image to following format // 32-bit image // > 0 is available, < 0 is visited // 17~19 bits is the direction // 8~11 bits is the bucket it falls to (for BitScanForward) // 0~8 bits is the color static int* preprocessMSER_8UC1( CvMat* img, int*** heap_cur, CvMat* src, CvMat* mask ) { int srccpt = src->step-src->cols; int cpt_1 = img->cols-src->cols-1; int* imgptr = img->data.i; int* startptr; int level_size[256]; for ( int i = 0; i < 256; i++ ) level_size[i] = 0; for ( int i = 0; i < src->cols+2; i++ ) { *imgptr = -1; imgptr++; } imgptr += cpt_1-1; uchar* srcptr = src->data.ptr; if ( mask ) { startptr = 0; uchar* maskptr = mask->data.ptr; for ( int i = 0; i < src->rows; i++ ) { *imgptr = -1; imgptr++; for ( int j = 0; j < src->cols; j++ ) { if ( *maskptr ) { if ( !startptr ) startptr = imgptr; *srcptr = 0xff-*srcptr; level_size[*srcptr]++; *imgptr = ((*srcptr>>5)<<8)|(*srcptr); } else { *imgptr = -1; } imgptr++; srcptr++; maskptr++; } *imgptr = -1; imgptr += cpt_1; srcptr += srccpt; maskptr += srccpt; } } else { startptr = imgptr+img->cols+1; for ( int i = 0; i < src->rows; i++ ) { *imgptr = -1; imgptr++; for ( int j = 0; j < src->cols; j++ ) { *srcptr = 0xff-*srcptr; level_size[*srcptr]++; *imgptr = ((*srcptr>>5)<<8)|(*srcptr); imgptr++; srcptr++; } *imgptr = -1; imgptr += cpt_1; srcptr += srccpt; } } for ( int i = 0; i < src->cols+2; i++ ) { *imgptr = -1; imgptr++; } heap_cur[0][0] = 0; for ( int i = 1; i < 256; i++ ) { heap_cur[i] = heap_cur[i-1]+level_size[i-1]+1; heap_cur[i][0] = 0; } return startptr; } static void extractMSER_8UC1_Pass( int* ioptr, int* imgptr, int*** heap_cur, LinkedPoint* ptsptr, MSERGrowHistory* histptr, MSERConnectedComp* comptr, int step, int stepmask, int stepgap, MSERParams params, int color, CvSeq* contours, CvMemStorage* storage ) { comptr->grey_level = 256; comptr++; comptr->grey_level = (*imgptr)&0xff; initMSERComp( comptr ); *imgptr |= 0x80000000; heap_cur += (*imgptr)&0xff; int dir[] = { 1, step, -1, -step }; #ifdef __INTRIN_ENABLED__ unsigned long heapbit[] = { 0, 0, 0, 0, 0, 0, 0, 0 }; unsigned long* bit_cur = heapbit+(((*imgptr)&0x700)>>8); #endif for ( ; ; ) { // take tour of all the 4 directions while ( ((*imgptr)&0x70000) < 0x40000 ) { // get the neighbor int* imgptr_nbr = imgptr+dir[((*imgptr)&0x70000)>>16]; if ( *imgptr_nbr >= 0 ) // if the neighbor is not visited yet { *imgptr_nbr |= 0x80000000; // mark it as visited if ( ((*imgptr_nbr)&0xff) < ((*imgptr)&0xff) ) { // when the value of neighbor smaller than current // push current to boundary heap and make the neighbor to be the current one // create an empty comp (*heap_cur)++; **heap_cur = imgptr; *imgptr += 0x10000; heap_cur += ((*imgptr_nbr)&0xff)-((*imgptr)&0xff); #ifdef __INTRIN_ENABLED__ _bitset( bit_cur, (*imgptr)&0x1f ); bit_cur += (((*imgptr_nbr)&0x700)-((*imgptr)&0x700))>>8; #endif imgptr = imgptr_nbr; comptr++; initMSERComp( comptr ); comptr->grey_level = (*imgptr)&0xff; continue; } else { // otherwise, push the neighbor to boundary heap heap_cur[((*imgptr_nbr)&0xff)-((*imgptr)&0xff)]++; *heap_cur[((*imgptr_nbr)&0xff)-((*imgptr)&0xff)] = imgptr_nbr; #ifdef __INTRIN_ENABLED__ _bitset( bit_cur+((((*imgptr_nbr)&0x700)-((*imgptr)&0x700))>>8), (*imgptr_nbr)&0x1f ); #endif } } *imgptr += 0x10000; } int imsk = (int)(imgptr-ioptr); ptsptr->pt = cvPoint( imsk&stepmask, imsk>>stepgap ); // get the current location accumulateMSERComp( comptr, ptsptr ); ptsptr++; // get the next pixel from boundary heap if ( **heap_cur ) { imgptr = **heap_cur; (*heap_cur)--; #ifdef __INTRIN_ENABLED__ if ( !**heap_cur ) _bitreset( bit_cur, (*imgptr)&0x1f ); #endif } else { #ifdef __INTRIN_ENABLED__ bool found_pixel = 0; unsigned long pixel_val; for ( int i = ((*imgptr)&0x700)>>8; i < 8; i++ ) { if ( _BitScanForward( &pixel_val, *bit_cur ) ) { found_pixel = 1; pixel_val += i<<5; heap_cur += pixel_val-((*imgptr)&0xff); break; } bit_cur++; } if ( found_pixel ) #else heap_cur++; unsigned long pixel_val = 0; for ( unsigned long i = ((*imgptr)&0xff)+1; i < 256; i++ ) { if ( **heap_cur ) { pixel_val = i; break; } heap_cur++; } if ( pixel_val ) #endif { imgptr = **heap_cur; (*heap_cur)--; #ifdef __INTRIN_ENABLED__ if ( !**heap_cur ) _bitreset( bit_cur, pixel_val&0x1f ); #endif if ( pixel_val < comptr[-1].grey_level ) { // check the stablity and push a new history, increase the grey level if ( MSERStableCheck( comptr, params ) ) { CvContour* contour = MSERToContour( comptr, storage ); contour->color = color; cvSeqPush( contours, &contour ); } MSERNewHistory( comptr, histptr ); comptr[0].grey_level = pixel_val; histptr++; } else { // keep merging top two comp in stack until the grey level >= pixel_val for ( ; ; ) { comptr--; MSERMergeComp( comptr+1, comptr, comptr, histptr ); histptr++; if ( pixel_val <= comptr[0].grey_level ) break; if ( pixel_val < comptr[-1].grey_level ) { // check the stablity here otherwise it wouldn't be an ER if ( MSERStableCheck( comptr, params ) ) { CvContour* contour = MSERToContour( comptr, storage ); contour->color = color; cvSeqPush( contours, &contour ); } MSERNewHistory( comptr, histptr ); comptr[0].grey_level = pixel_val; histptr++; break; } } } } else break; } } } static void extractMSER_8UC1( CvMat* src, CvMat* mask, CvSeq* contours, CvMemStorage* storage, MSERParams params ) { int step = 8; int stepgap = 3; while ( step < src->step+2 ) { step <<= 1; stepgap++; } int stepmask = step-1; // to speedup the process, make the width to be 2^N CvMat* img = cvCreateMat( src->rows+2, step, CV_32SC1 ); int* ioptr = img->data.i+step+1; int* imgptr; // pre-allocate boundary heap int** heap = (int**)cvAlloc( (src->rows*src->cols+256)*sizeof(heap[0]) ); int** heap_start[256]; heap_start[0] = heap; // pre-allocate linked point and grow history LinkedPoint* pts = (LinkedPoint*)cvAlloc( src->rows*src->cols*sizeof(pts[0]) ); MSERGrowHistory* history = (MSERGrowHistory*)cvAlloc( src->rows*src->cols*sizeof(history[0]) ); MSERConnectedComp comp[257]; // darker to brighter (MSER-) imgptr = preprocessMSER_8UC1( img, heap_start, src, mask ); extractMSER_8UC1_Pass( ioptr, imgptr, heap_start, pts, history, comp, step, stepmask, stepgap, params, -1, contours, storage ); // brighter to darker (MSER+) imgptr = preprocessMSER_8UC1( img, heap_start, src, mask ); extractMSER_8UC1_Pass( ioptr, imgptr, heap_start, pts, history, comp, step, stepmask, stepgap, params, 1, contours, storage ); // clean up cvFree( &history ); cvFree( &heap ); cvFree( &pts ); cvReleaseMat( &img ); } struct MSCRNode; struct TempMSCR { MSCRNode* head; MSCRNode* tail; double m; // the margin used to prune area later int size; }; struct MSCRNode { MSCRNode* shortcut; // to make the finding of root less painful MSCRNode* prev; MSCRNode* next; // a point double-linked list TempMSCR* tmsr; // the temporary msr (set to NULL at every re-initialise) TempMSCR* gmsr; // the global msr (once set, never to NULL) int index; // the index of the node, at this point, it should be x at the first 16-bits, and y at the last 16-bits. int rank; int reinit; int size, sizei; double dt, di; double s; }; struct MSCREdge { double chi; MSCRNode* left; MSCRNode* right; }; static double ChiSquaredDistance( uchar* x, uchar* y ) { return (double)((x[0]-y[0])*(x[0]-y[0]))/(double)(x[0]+y[0]+1e-10)+ (double)((x[1]-y[1])*(x[1]-y[1]))/(double)(x[1]+y[1]+1e-10)+ (double)((x[2]-y[2])*(x[2]-y[2]))/(double)(x[2]+y[2]+1e-10); } static void initMSCRNode( MSCRNode* node ) { node->gmsr = node->tmsr = NULL; node->reinit = 0xffff; node->rank = 0; node->sizei = node->size = 1; node->prev = node->next = node->shortcut = node; } // the preprocess to get the edge list with proper gaussian blur static int preprocessMSER_8UC3( MSCRNode* node, MSCREdge* edge, double* total, CvMat* src, CvMat* mask, CvMat* dx, CvMat* dy, int Ne, int edgeBlurSize ) { int srccpt = src->step-src->cols*3; uchar* srcptr = src->data.ptr; uchar* lastptr = src->data.ptr+3; double* dxptr = dx->data.db; for ( int i = 0; i < src->rows; i++ ) { for ( int j = 0; j < src->cols-1; j++ ) { *dxptr = ChiSquaredDistance( srcptr, lastptr ); dxptr++; srcptr += 3; lastptr += 3; } srcptr += srccpt+3; lastptr += srccpt+3; } srcptr = src->data.ptr; lastptr = src->data.ptr+src->step; double* dyptr = dy->data.db; for ( int i = 0; i < src->rows-1; i++ ) { for ( int j = 0; j < src->cols; j++ ) { *dyptr = ChiSquaredDistance( srcptr, lastptr ); dyptr++; srcptr += 3; lastptr += 3; } srcptr += srccpt; lastptr += srccpt; } // get dx and dy and blur it if ( edgeBlurSize >= 1 ) { cvSmooth( dx, dx, CV_GAUSSIAN, edgeBlurSize, edgeBlurSize ); cvSmooth( dy, dy, CV_GAUSSIAN, edgeBlurSize, edgeBlurSize ); } dxptr = dx->data.db; dyptr = dy->data.db; // assian dx, dy to proper edge list and initialize mscr node // the nasty code here intended to avoid extra loops if ( mask ) { Ne = 0; int maskcpt = mask->step-mask->cols+1; uchar* maskptr = mask->data.ptr; MSCRNode* nodeptr = node; initMSCRNode( nodeptr ); nodeptr->index = 0; *total += edge->chi = *dxptr; if ( maskptr[0] && maskptr[1] ) { edge->left = nodeptr; edge->right = nodeptr+1; edge++; Ne++; } dxptr++; nodeptr++; maskptr++; for ( int i = 1; i < src->cols-1; i++ ) { initMSCRNode( nodeptr ); nodeptr->index = i; if ( maskptr[0] && maskptr[1] ) { *total += edge->chi = *dxptr; edge->left = nodeptr; edge->right = nodeptr+1; edge++; Ne++; } dxptr++; nodeptr++; maskptr++; } initMSCRNode( nodeptr ); nodeptr->index = src->cols-1; nodeptr++; maskptr += maskcpt; for ( int i = 1; i < src->rows-1; i++ ) { initMSCRNode( nodeptr ); nodeptr->index = i<<16; if ( maskptr[0] ) { if ( maskptr[-mask->step] ) { *total += edge->chi = *dyptr; edge->left = nodeptr-src->cols; edge->right = nodeptr; edge++; Ne++; } if ( maskptr[1] ) { *total += edge->chi = *dxptr; edge->left = nodeptr; edge->right = nodeptr+1; edge++; Ne++; } } dyptr++; dxptr++; nodeptr++; maskptr++; for ( int j = 1; j < src->cols-1; j++ ) { initMSCRNode( nodeptr ); nodeptr->index = (i<<16)|j; if ( maskptr[0] ) { if ( maskptr[-mask->step] ) { *total += edge->chi = *dyptr; edge->left = nodeptr-src->cols; edge->right = nodeptr; edge++; Ne++; } if ( maskptr[1] ) { *total += edge->chi = *dxptr; edge->left = nodeptr; edge->right = nodeptr+1; edge++; Ne++; } } dyptr++; dxptr++; nodeptr++; maskptr++; } initMSCRNode( nodeptr ); nodeptr->index = (i<<16)|(src->cols-1); if ( maskptr[0] && maskptr[-mask->step] ) { *total += edge->chi = *dyptr; edge->left = nodeptr-src->cols; edge->right = nodeptr; edge++; Ne++; } dyptr++; nodeptr++; maskptr += maskcpt; } initMSCRNode( nodeptr ); nodeptr->index = (src->rows-1)<<16; if ( maskptr[0] ) { if ( maskptr[1] ) { *total += edge->chi = *dxptr; edge->left = nodeptr; edge->right = nodeptr+1; edge++; Ne++; } if ( maskptr[-mask->step] ) { *total += edge->chi = *dyptr; edge->left = nodeptr-src->cols; edge->right = nodeptr; edge++; Ne++; } } dxptr++; dyptr++; nodeptr++; maskptr++; for ( int i = 1; i < src->cols-1; i++ ) { initMSCRNode( nodeptr ); nodeptr->index = ((src->rows-1)<<16)|i; if ( maskptr[0] ) { if ( maskptr[1] ) { *total += edge->chi = *dxptr; edge->left = nodeptr; edge->right = nodeptr+1; edge++; Ne++; } if ( maskptr[-mask->step] ) { *total += edge->chi = *dyptr; edge->left = nodeptr-src->cols; edge->right = nodeptr; edge++; Ne++; } } dxptr++; dyptr++; nodeptr++; maskptr++; } initMSCRNode( nodeptr ); nodeptr->index = ((src->rows-1)<<16)|(src->cols-1); if ( maskptr[0] && maskptr[-mask->step] ) { *total += edge->chi = *dyptr; edge->left = nodeptr-src->cols; edge->right = nodeptr; Ne++; } } else { MSCRNode* nodeptr = node; initMSCRNode( nodeptr ); nodeptr->index = 0; *total += edge->chi = *dxptr; dxptr++; edge->left = nodeptr; edge->right = nodeptr+1; edge++; nodeptr++; for ( int i = 1; i < src->cols-1; i++ ) { initMSCRNode( nodeptr ); nodeptr->index = i; *total += edge->chi = *dxptr; dxptr++; edge->left = nodeptr; edge->right = nodeptr+1; edge++; nodeptr++; } initMSCRNode( nodeptr ); nodeptr->index = src->cols-1; nodeptr++; for ( int i = 1; i < src->rows-1; i++ ) { initMSCRNode( nodeptr ); nodeptr->index = i<<16; *total += edge->chi = *dyptr; dyptr++; edge->left = nodeptr-src->cols; edge->right = nodeptr; edge++; *total += edge->chi = *dxptr; dxptr++; edge->left = nodeptr; edge->right = nodeptr+1; edge++; nodeptr++; for ( int j = 1; j < src->cols-1; j++ ) { initMSCRNode( nodeptr ); nodeptr->index = (i<<16)|j; *total += edge->chi = *dyptr; dyptr++; edge->left = nodeptr-src->cols; edge->right = nodeptr; edge++; *total += edge->chi = *dxptr; dxptr++; edge->left = nodeptr; edge->right = nodeptr+1; edge++; nodeptr++; } initMSCRNode( nodeptr ); nodeptr->index = (i<<16)|(src->cols-1); *total += edge->chi = *dyptr; dyptr++; edge->left = nodeptr-src->cols; edge->right = nodeptr; edge++; nodeptr++; } initMSCRNode( nodeptr ); nodeptr->index = (src->rows-1)<<16; *total += edge->chi = *dxptr; dxptr++; edge->left = nodeptr; edge->right = nodeptr+1; edge++; *total += edge->chi = *dyptr; dyptr++; edge->left = nodeptr-src->cols; edge->right = nodeptr; edge++; nodeptr++; for ( int i = 1; i < src->cols-1; i++ ) { initMSCRNode( nodeptr ); nodeptr->index = ((src->rows-1)<<16)|i; *total += edge->chi = *dxptr; dxptr++; edge->left = nodeptr; edge->right = nodeptr+1; edge++; *total += edge->chi = *dyptr; dyptr++; edge->left = nodeptr-src->cols; edge->right = nodeptr; edge++; nodeptr++; } initMSCRNode( nodeptr ); nodeptr->index = ((src->rows-1)<<16)|(src->cols-1); *total += edge->chi = *dyptr; edge->left = nodeptr-src->cols; edge->right = nodeptr; } return Ne; } #define cmp_mscr_edge(edge1, edge2) \ ((edge1).chi < (edge2).chi) static CV_IMPLEMENT_QSORT( QuickSortMSCREdge, MSCREdge, cmp_mscr_edge ) // to find the root of one region static MSCRNode* findMSCR( MSCRNode* x ) { MSCRNode* prev = x; MSCRNode* next; for ( ; ; ) { next = x->shortcut; x->shortcut = prev; if ( next == x ) break; prev= x; x = next; } MSCRNode* root = x; for ( ; ; ) { prev = x->shortcut; x->shortcut = root; if ( prev == x ) break; x = prev; } return root; } // the stable mscr should be: // bigger than minArea and smaller than maxArea // differ from its ancestor more than minDiversity static bool MSCRStableCheck( MSCRNode* x, MSERParams params ) { if ( x->size <= params.minArea || x->size >= params.maxArea ) return 0; if ( x->gmsr == NULL ) return 1; double div = (double)(x->size-x->gmsr->size)/(double)x->size; return div > params.minDiversity; } static void extractMSER_8UC3( CvMat* src, CvMat* mask, CvSeq* contours, CvMemStorage* storage, MSERParams params ) { MSCRNode* map = (MSCRNode*)cvAlloc( src->cols*src->rows*sizeof(map[0]) ); int Ne = src->cols*src->rows*2-src->cols-src->rows; MSCREdge* edge = (MSCREdge*)cvAlloc( Ne*sizeof(edge[0]) ); TempMSCR* mscr = (TempMSCR*)cvAlloc( src->cols*src->rows*sizeof(mscr[0]) ); double emean = 0; CvMat* dx = cvCreateMat( src->rows, src->cols-1, CV_64FC1 ); CvMat* dy = cvCreateMat( src->rows-1, src->cols, CV_64FC1 ); Ne = preprocessMSER_8UC3( map, edge, &emean, src, mask, dx, dy, Ne, params.edgeBlurSize ); emean = emean / (double)Ne; QuickSortMSCREdge( edge, Ne, 0 ); MSCREdge* edge_ub = edge+Ne; MSCREdge* edgeptr = edge; TempMSCR* mscrptr = mscr; // the evolution process for ( int i = 0; i < params.maxEvolution; i++ ) { double k = (double)i/(double)params.maxEvolution*(TABLE_SIZE-1); int ti = cvFloor(k); double reminder = k-ti; double thres = emean*(chitab3[ti]*(1-reminder)+chitab3[ti+1]*reminder); // to process all the edges in the list that chi < thres while ( edgeptr < edge_ub && edgeptr->chi < thres ) { MSCRNode* lr = findMSCR( edgeptr->left ); MSCRNode* rr = findMSCR( edgeptr->right ); // get the region root (who is responsible) if ( lr != rr ) { // rank idea take from: N-tree Disjoint-Set Forests for Maximally Stable Extremal Regions if ( rr->rank > lr->rank ) { MSCRNode* tmp; CV_SWAP( lr, rr, tmp ); } else if ( lr->rank == rr->rank ) { // at the same rank, we will compare the size if ( lr->size > rr->size ) { MSCRNode* tmp; CV_SWAP( lr, rr, tmp ); } lr->rank++; } rr->shortcut = lr; lr->size += rr->size; // join rr to the end of list lr (lr is a endless double-linked list) lr->prev->next = rr; lr->prev = rr->prev; rr->prev->next = lr; rr->prev = lr; // area threshold force to reinitialize if ( lr->size > (lr->size-rr->size)*params.areaThreshold ) { lr->sizei = lr->size; lr->reinit = i; if ( lr->tmsr != NULL ) { lr->tmsr->m = lr->dt-lr->di; lr->tmsr = NULL; } lr->di = edgeptr->chi; lr->s = 1e10; } lr->dt = edgeptr->chi; if ( i > lr->reinit ) { double s = (double)(lr->size-lr->sizei)/(lr->dt-lr->di); if ( s < lr->s ) { // skip the first one and check stablity if ( i > lr->reinit+1 && MSCRStableCheck( lr, params ) ) { if ( lr->tmsr == NULL ) { lr->gmsr = lr->tmsr = mscrptr; mscrptr++; } lr->tmsr->size = lr->size; lr->tmsr->head = lr; lr->tmsr->tail = lr->prev; lr->tmsr->m = 0; } lr->s = s; } } } edgeptr++; } if ( edgeptr >= edge_ub ) break; } for ( TempMSCR* ptr = mscr; ptr < mscrptr; ptr++ ) // to prune area with margin less than minMargin if ( ptr->m > params.minMargin ) { CvSeq* _contour = cvCreateSeq( CV_SEQ_KIND_GENERIC|CV_32SC2, sizeof(CvContour), sizeof(CvPoint), storage ); cvSeqPushMulti( _contour, 0, ptr->size ); MSCRNode* lpt = ptr->head; for ( int i = 0; i < ptr->size; i++ ) { CvPoint* pt = CV_GET_SEQ_ELEM( CvPoint, _contour, i ); pt->x = (lpt->index)&0xffff; pt->y = (lpt->index)>>16; lpt = lpt->next; } CvContour* contour = (CvContour*)_contour; cvBoundingRect( contour ); contour->color = 0; cvSeqPush( contours, &contour ); } cvReleaseMat( &dx ); cvReleaseMat( &dy ); cvFree( &mscr ); cvFree( &edge ); cvFree( &map ); } static void extractMSER( CvArr* _img, CvArr* _mask, CvSeq** _contours, CvMemStorage* storage, MSERParams params ) { CvMat srchdr, *src = cvGetMat( _img, &srchdr ); CvMat maskhdr, *mask = _mask ? cvGetMat( _mask, &maskhdr ) : 0; CvSeq* contours = 0; CV_Assert(src != 0); CV_Assert(CV_MAT_TYPE(src->type) == CV_8UC1 || CV_MAT_TYPE(src->type) == CV_8UC3); CV_Assert(mask == 0 || (CV_ARE_SIZES_EQ(src, mask) && CV_MAT_TYPE(mask->type) == CV_8UC1)); CV_Assert(storage != 0); contours = *_contours = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvSeq*), storage ); // choose different method for different image type // for grey image, it is: Linear Time Maximally Stable Extremal Regions // for color image, it is: Maximally Stable Colour Regions for Recognition and Matching switch ( CV_MAT_TYPE(src->type) ) { case CV_8UC1: extractMSER_8UC1( src, mask, contours, storage, params ); break; case CV_8UC3: extractMSER_8UC3( src, mask, contours, storage, params ); break; } } MSER::MSER( int _delta, int _min_area, int _max_area, double _max_variation, double _min_diversity, int _max_evolution, double _area_threshold, double _min_margin, int _edge_blur_size ) : delta(_delta), minArea(_min_area), maxArea(_max_area), maxVariation(_max_variation), minDiversity(_min_diversity), maxEvolution(_max_evolution), areaThreshold(_area_threshold), minMargin(_min_margin), edgeBlurSize(_edge_blur_size) { } void MSER::operator()( const Mat& image, vector >& dstcontours, const Mat& mask ) const { CvMat _image = image, _mask, *pmask = 0; if( mask.data ) pmask = &(_mask = mask); MemStorage storage(cvCreateMemStorage(0)); Seq contours; extractMSER( &_image, pmask, &contours.seq, storage, MSERParams(delta, minArea, maxArea, maxVariation, minDiversity, maxEvolution, areaThreshold, minMargin, edgeBlurSize)); SeqIterator it = contours.begin(); size_t i, ncontours = contours.size(); dstcontours.resize(ncontours); for( i = 0; i < ncontours; i++, ++it ) Seq(*it).copyTo(dstcontours[i]); } void MserFeatureDetector::detectImpl( const Mat& image, vector& keypoints, const Mat& mask ) const { vector > msers; (*this)(image, msers, mask); vector >::const_iterator contour_it = msers.begin(); Rect r(0, 0, image.cols, image.rows); for( ; contour_it != msers.end(); ++contour_it ) { // TODO check transformation from MSER region to KeyPoint RotatedRect rect = fitEllipse(Mat(*contour_it)); float diam = sqrt(rect.size.height*rect.size.width); if( diam > std::numeric_limits::epsilon() && r.contains(rect.center) ) keypoints.push_back( KeyPoint( rect.center, diam, rect.angle) ); } } }