#!/usr/bin/env python ''' gabor_threads.py ========= Sample demonstrates: - use of multiple Gabor filter convolutions to get Fractalius-like image effect (http://www.redfieldplugins.com/filterFractalius.htm) - use of python threading to accelerate the computation Usage ----- gabor_threads.py [image filename] ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv from multiprocessing.pool import ThreadPool def build_filters(): filters = [] ksize = 31 for theta in np.arange(0, np.pi, np.pi / 16): kern = cv.getGaborKernel((ksize, ksize), 4.0, theta, 10.0, 0.5, 0, ktype=cv.CV_32F) kern /= 1.5*kern.sum() filters.append(kern) return filters def process(img, filters): accum = np.zeros_like(img) for kern in filters: fimg = cv.filter2D(img, cv.CV_8UC3, kern) np.maximum(accum, fimg, accum) return accum def process_threaded(img, filters, threadn = 8): accum = np.zeros_like(img) def f(kern): return cv.filter2D(img, cv.CV_8UC3, kern) pool = ThreadPool(processes=threadn) for fimg in pool.imap_unordered(f, filters): np.maximum(accum, fimg, accum) return accum if __name__ == '__main__': import sys from common import Timer print(__doc__) try: img_fn = sys.argv[1] except: img_fn = 'baboon.jpg' img = cv.imread(cv.samples.findFile(img_fn)) if img is None: print('Failed to load image file:', img_fn) sys.exit(1) filters = build_filters() with Timer('running single-threaded'): res1 = process(img, filters) with Timer('running multi-threaded'): res2 = process_threaded(img, filters) print('res1 == res2: ', (res1 == res2).all()) cv.imshow('img', img) cv.imshow('result', res2) cv.waitKey() cv.destroyAllWindows()