/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include #include #include #ifdef _WIN32 #include #endif /* _WIN32 */ #include "utility.hpp" #include "opencv2/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" #include "opencv2/calib3d.hpp" #if defined __GNUC__ && __GNUC__ >= 8 #pragma GCC diagnostic ignored "-Wclass-memaccess" #endif using namespace cv; #ifndef PATH_MAX #define PATH_MAX 512 #endif /* PATH_MAX */ #define __BEGIN__ __CV_BEGIN__ #define __END__ __CV_END__ #define EXIT __CV_EXIT__ static int icvMkDir( const char* filename ) { char path[PATH_MAX]; char* p; int pos; #ifdef _WIN32 struct _stat st; #else /* _WIN32 */ struct stat st; mode_t mode; mode = 0755; #endif /* _WIN32 */ strcpy( path, filename ); p = path; for( ; ; ) { pos = (int)strcspn( p, "/\\" ); if( pos == (int) strlen( p ) ) break; if( pos != 0 ) { p[pos] = '\0'; #ifdef _WIN32 if( p[pos-1] != ':' ) { if( _stat( path, &st ) != 0 ) { if( _mkdir( path ) != 0 ) return 0; } } #else /* _WIN32 */ if( stat( path, &st ) != 0 ) { if( mkdir( path, mode ) != 0 ) return 0; } #endif /* _WIN32 */ } p[pos] = '/'; p += pos + 1; } return 1; } static void icvWriteVecHeader( FILE* file, int count, int width, int height ) { int vecsize; short tmp; /* number of samples */ fwrite( &count, sizeof( count ), 1, file ); /* vector size */ vecsize = width * height; fwrite( &vecsize, sizeof( vecsize ), 1, file ); /* min/max values */ tmp = 0; fwrite( &tmp, sizeof( tmp ), 1, file ); fwrite( &tmp, sizeof( tmp ), 1, file ); } static void icvWriteVecSample( FILE* file, Mat sample ) { uchar chartmp = 0; fwrite( &chartmp, sizeof( chartmp ), 1, file ); for(int r = 0; r < sample.rows; r++ ) { for(int c = 0; c < sample.cols; c++ ) { short tmp = sample.at(r,c); fwrite( &tmp, sizeof( tmp ), 1, file ); } } } /* Calculates coefficients of perspective transformation * which maps into rectangle ((0,0), (w,0), (w,h), (h,0)): * * c00*xi + c01*yi + c02 * ui = --------------------- * c20*xi + c21*yi + c22 * * c10*xi + c11*yi + c12 * vi = --------------------- * c20*xi + c21*yi + c22 * * Coefficients are calculated by solving linear system: * / x0 y0 1 0 0 0 -x0*u0 -y0*u0 \ /c00\ /u0\ * | x1 y1 1 0 0 0 -x1*u1 -y1*u1 | |c01| |u1| * | x2 y2 1 0 0 0 -x2*u2 -y2*u2 | |c02| |u2| * | x3 y3 1 0 0 0 -x3*u3 -y3*u3 |.|c10|=|u3|, * | 0 0 0 x0 y0 1 -x0*v0 -y0*v0 | |c11| |v0| * | 0 0 0 x1 y1 1 -x1*v1 -y1*v1 | |c12| |v1| * | 0 0 0 x2 y2 1 -x2*v2 -y2*v2 | |c20| |v2| * \ 0 0 0 x3 y3 1 -x3*v3 -y3*v3 / \c21/ \v3/ * * where: * (xi, yi) = (quad[i][0], quad[i][1]) * cij - coeffs[i][j], coeffs[2][2] = 1 * (ui, vi) - rectangle vertices */ static void cvGetPerspectiveTransform( Size src_size, double quad[4][2], double coeffs[3][3] ) { double a[8][8]; double b[8]; Mat A( 8, 8, CV_64FC1, a ); Mat B( 8, 1, CV_64FC1, b ); Mat X( 8, 1, CV_64FC1, coeffs ); int i; for( i = 0; i < 4; ++i ) { a[i][0] = quad[i][0]; a[i][1] = quad[i][1]; a[i][2] = 1; a[i][3] = a[i][4] = a[i][5] = a[i][6] = a[i][7] = 0; b[i] = 0; } for( i = 4; i < 8; ++i ) { a[i][3] = quad[i-4][0]; a[i][4] = quad[i-4][1]; a[i][5] = 1; a[i][0] = a[i][1] = a[i][2] = a[i][6] = a[i][7] = 0; b[i] = 0; } int u = src_size.width - 1; int v = src_size.height - 1; a[1][6] = -quad[1][0] * u; a[1][7] = -quad[1][1] * u; a[2][6] = -quad[2][0] * u; a[2][7] = -quad[2][1] * u; b[1] = b[2] = u; a[6][6] = -quad[2][0] * v; a[6][7] = -quad[2][1] * v; a[7][6] = -quad[3][0] * v; a[7][7] = -quad[3][1] * v; b[6] = b[7] = v; solve( A, B, X ); coeffs[2][2] = 1; } /* Warps source into destination by a perspective transform */ static void cvWarpPerspective( Mat src, Mat dst, double quad[4][2] ) { int fill_value = 0; double c[3][3]; /* transformation coefficients */ double q[4][2]; /* rearranged quad */ int left = 0; int right = 0; int next_right = 0; int next_left = 0; double y_min = 0; double y_max = 0; double k_left, b_left, k_right, b_right; double d = 0; int direction = 0; int i; if( src.type() != CV_8UC1 || src.dims != 2 ) { CV_Error( Error::StsBadArg, "Source must be two-dimensional array of CV_8UC1 type." ); } if( dst.type() != CV_8UC1 || dst.dims != 2 ) { CV_Error( Error::StsBadArg, "Destination must be two-dimensional array of CV_8UC1 type." ); } cvGetPerspectiveTransform( src.size(), quad, c ); /* if direction > 0 then vertices in quad follow in a CW direction, otherwise they follow in a CCW direction */ direction = 0; for( i = 0; i < 4; ++i ) { int ni = i + 1; if( ni == 4 ) ni = 0; int pi = i - 1; if( pi == -1 ) pi = 3; d = (quad[i][0] - quad[pi][0])*(quad[ni][1] - quad[i][1]) - (quad[i][1] - quad[pi][1])*(quad[ni][0] - quad[i][0]); int cur_direction = d > 0 ? 1 : d < 0 ? -1 : 0; if( direction == 0 ) { direction = cur_direction; } else if( direction * cur_direction < 0 ) { direction = 0; break; } } if( direction == 0 ) { CV_Error(Error::StsBadArg, "Quadrangle is nonconvex or degenerated." ); } /* is the index of the topmost quad vertice if there are two such vertices is the leftmost one */ left = 0; for( i = 1; i < 4; ++i ) { if( (quad[i][1] < quad[left][1]) || ((quad[i][1] == quad[left][1]) && (quad[i][0] < quad[left][0])) ) { left = i; } } /* rearrange vertices in such way that they follow in a CW direction and the first vertice is the topmost one and put them into */ if( direction > 0 ) { for( i = left; i < 4; ++i ) { q[i-left][0] = quad[i][0]; q[i-left][1] = quad[i][1]; } for( i = 0; i < left; ++i ) { q[4-left+i][0] = quad[i][0]; q[4-left+i][1] = quad[i][1]; } } else { for( i = left; i >= 0; --i ) { q[left-i][0] = quad[i][0]; q[left-i][1] = quad[i][1]; } for( i = 3; i > left; --i ) { q[4+left-i][0] = quad[i][0]; q[4+left-i][1] = quad[i][1]; } } left = right = 0; /* if there are two topmost points, is the index of the rightmost one otherwise */ if( q[left][1] == q[left+1][1] ) { right = 1; } /* follows in a CCW direction */ next_left = 3; /* follows in a CW direction */ next_right = right + 1; /* subtraction of 1 prevents skipping of the first row */ y_min = q[left][1] - 1; /* left edge equation: y = k_left * x + b_left */ k_left = (q[left][0] - q[next_left][0]) / (q[left][1] - q[next_left][1]); b_left = (q[left][1] * q[next_left][0] - q[left][0] * q[next_left][1]) / (q[left][1] - q[next_left][1]); /* right edge equation: y = k_right * x + b_right */ k_right = (q[right][0] - q[next_right][0]) / (q[right][1] - q[next_right][1]); b_right = (q[right][1] * q[next_right][0] - q[right][0] * q[next_right][1]) / (q[right][1] - q[next_right][1]); for(;;) { int x, y; y_max = MIN( q[next_left][1], q[next_right][1] ); int iy_min = MAX( cvRound(y_min), 0 ) + 1; int iy_max = MIN( cvRound(y_max), dst.rows - 1 ); double x_min = k_left * iy_min + b_left; double x_max = k_right * iy_min + b_right; /* walk through the destination quadrangle row by row */ for( y = iy_min; y <= iy_max; ++y ) { int ix_min = MAX( cvRound( x_min ), 0 ); int ix_max = MIN( cvRound( x_max ), dst.cols - 1 ); for( x = ix_min; x <= ix_max; ++x ) { /* calculate coordinates of the corresponding source array point */ double div = (c[2][0] * x + c[2][1] * y + c[2][2]); double src_x = (c[0][0] * x + c[0][1] * y + c[0][2]) / div; double src_y = (c[1][0] * x + c[1][1] * y + c[1][2]) / div; int isrc_x = cvFloor( src_x ); int isrc_y = cvFloor( src_y ); double delta_x = src_x - isrc_x; double delta_y = src_y - isrc_y; int i00, i10, i01, i11; i00 = i10 = i01 = i11 = (int) fill_value; /* linear interpolation using 2x2 neighborhood */ if( isrc_x >= 0 && isrc_x < src.cols && isrc_y >= 0 && isrc_y < src.rows ) { i00 = src.at(isrc_y, isrc_x); } if( isrc_x >= -1 && isrc_x + 1 < src.cols && isrc_y >= 0 && isrc_y < src.rows ) { i10 = src.at(isrc_y, isrc_x + 1); } if( isrc_x >= 0 && isrc_x < src.cols && isrc_y >= -1 && isrc_y + 1 < src.rows ) { i01 = src.at(isrc_y + 1, isrc_x); } if( isrc_x >= -1 && isrc_x + 1 < src.cols && isrc_y >= -1 && isrc_y + 1 < src.rows ) { i11 = src.at(isrc_y + 1, isrc_x + 1); } double i0 = i00 + (i10 - i00)*delta_x; double i1 = i01 + (i11 - i01)*delta_x; dst.at(y, x) = (uchar) (i0 + (i1 - i0)*delta_y); } x_min += k_left; x_max += k_right; } if( (next_left == next_right) || (next_left+1 == next_right && q[next_left][1] == q[next_right][1]) ) { break; } if( y_max == q[next_left][1] ) { left = next_left; next_left = left - 1; k_left = (q[left][0] - q[next_left][0]) / (q[left][1] - q[next_left][1]); b_left = (q[left][1] * q[next_left][0] - q[left][0] * q[next_left][1]) / (q[left][1] - q[next_left][1]); } if( y_max == q[next_right][1] ) { right = next_right; next_right = right + 1; k_right = (q[right][0] - q[next_right][0]) / (q[right][1] - q[next_right][1]); b_right = (q[right][1] * q[next_right][0] - q[right][0] * q[next_right][1]) / (q[right][1] - q[next_right][1]); } y_min = y_max; } } static void icvRandomQuad( int width, int height, double quad[4][2], double maxxangle, double maxyangle, double maxzangle ) { double distfactor = 3.0; double distfactor2 = 1.0; double halfw, halfh; int i; double rotVectData[3]; double vectData[3]; double rotMatData[9]; double d; Mat rotVect( 3, 1, CV_64FC1, &rotVectData[0] ); Mat rotMat( 3, 3, CV_64FC1, &rotMatData[0] ); Mat vect( 3, 1, CV_64FC1, &vectData[0] ); rotVectData[0] = theRNG().uniform( -maxxangle, maxxangle ); rotVectData[1] = ( maxyangle - fabs( rotVectData[0] ) ) * theRNG().uniform( -1.0, 1.0 ); rotVectData[2] = theRNG().uniform( -maxzangle, maxzangle ); d = ( distfactor + distfactor2 * theRNG().uniform( -1.0, 1.0 ) ) * width; Rodrigues( rotVect, rotMat ); halfw = 0.5 * width; halfh = 0.5 * height; quad[0][0] = -halfw; quad[0][1] = -halfh; quad[1][0] = halfw; quad[1][1] = -halfh; quad[2][0] = halfw; quad[2][1] = halfh; quad[3][0] = -halfw; quad[3][1] = halfh; for( i = 0; i < 4; i++ ) { rotVectData[0] = quad[i][0]; rotVectData[1] = quad[i][1]; rotVectData[2] = 0.0; gemm(rotMat, rotVect, 1., Mat(), 1., vect); quad[i][0] = vectData[0] * d / (d + vectData[2]) + halfw; quad[i][1] = vectData[1] * d / (d + vectData[2]) + halfh; } } typedef struct CvSampleDistortionData { Mat src; Mat erode; Mat dilate; Mat mask; Mat img; Mat maskimg; int dx; int dy; int bgcolor; } CvSampleDistortionData; #if defined CV_OPENMP && (defined _MSC_VER || defined CV_ICC) #define CV_OPENMP 1 #else #undef CV_OPENMP #endif typedef struct CvBackgroundData { int count; char** filename; int last; int round; Size winsize; } CvBackgroundData; typedef struct CvBackgroundReader { Mat src; Mat img; Point offset; float scale; float scalefactor; float stepfactor; Point point; } CvBackgroundReader; /* * Background reader * Created in each thread */ CvBackgroundReader* cvbgreader = NULL; #if defined CV_OPENMP #pragma omp threadprivate(cvbgreader) #endif CvBackgroundData* cvbgdata = NULL; static int icvStartSampleDistortion( const char* imgfilename, int bgcolor, int bgthreshold, CvSampleDistortionData* data ) { memset( data, 0, sizeof( *data ) ); data->src = imread( imgfilename, IMREAD_GRAYSCALE ); if( !(data->src.empty()) && data->src.type() == CV_8UC1 ) { int r, c; data->dx = data->src.cols / 2; data->dy = data->src.rows / 2; data->bgcolor = bgcolor; data->mask = data->src.clone(); data->erode = data->src.clone(); data->dilate = data->src.clone(); /* make mask image */ for( r = 0; r < data->mask.rows; r++ ) { for( c = 0; c < data->mask.cols; c++ ) { uchar& pmask = data->mask.at(r, c); if( bgcolor - bgthreshold <= (int)pmask && (int)pmask <= bgcolor + bgthreshold ) { pmask = (uchar) 0; } else { pmask = (uchar) 255; } } } /* extend borders of source image */ erode( data->src, data->erode, Mat() ); dilate( data->src, data->dilate, Mat() ); for( r = 0; r < data->mask.rows; r++ ) { for( c = 0; c < data->mask.cols; c++ ) { uchar& pmask = data->mask.at(r, c); if( pmask == 0 ) { uchar& psrc = data->src.at(r, c); uchar& perode = data->erode.at(r, c); uchar& pdilate = data->dilate.at(r, c); uchar de = (uchar)(bgcolor - perode); uchar dd = (uchar)(pdilate - bgcolor); if( de >= dd && de > bgthreshold ) { psrc = perode; } if( dd > de && dd > bgthreshold ) { psrc = pdilate; } } } } data->img = Mat(Size( data->src.cols + 2 * data->dx, data->src.rows + 2 * data->dy ), CV_8UC1); data->maskimg = Mat(Size(data->src.cols + 2 * data->dx, data->src.rows + 2 * data->dy), CV_8UC1); return 1; } return 0; } static void icvPlaceDistortedSample( Mat background, int inverse, int maxintensitydev, double maxxangle, double maxyangle, double maxzangle, int inscribe, double maxshiftf, double maxscalef, CvSampleDistortionData* data ) { double quad[4][2]; int r, c; int forecolordev; float scale; Rect cr; Rect roi; double xshift, yshift, randscale; icvRandomQuad( data->src.cols, data->src.rows, quad, maxxangle, maxyangle, maxzangle ); quad[0][0] += (double) data->dx; quad[0][1] += (double) data->dy; quad[1][0] += (double) data->dx; quad[1][1] += (double) data->dy; quad[2][0] += (double) data->dx; quad[2][1] += (double) data->dy; quad[3][0] += (double) data->dx; quad[3][1] += (double) data->dy; data->img = data->bgcolor; data->maskimg = 0; cvWarpPerspective( data->src, data->img, quad ); cvWarpPerspective( data->mask, data->maskimg, quad ); GaussianBlur( data->maskimg, data->maskimg, Size(3, 3), 0, 0 ); cr.x = data->dx; cr.y = data->dy; cr.width = data->src.cols; cr.height = data->src.rows; if( inscribe ) { /* quad's circumscribing rectangle */ cr.x = (int) MIN( quad[0][0], quad[3][0] ); cr.y = (int) MIN( quad[0][1], quad[1][1] ); cr.width = (int) (MAX( quad[1][0], quad[2][0] ) + 0.5F ) - cr.x; cr.height = (int) (MAX( quad[2][1], quad[3][1] ) + 0.5F ) - cr.y; } xshift = theRNG().uniform( 0., maxshiftf ); yshift = theRNG().uniform( 0., maxshiftf ); cr.x -= (int) ( xshift * cr.width ); cr.y -= (int) ( yshift * cr.height ); cr.width = (int) ((1.0 + maxshiftf) * cr.width ); cr.height = (int) ((1.0 + maxshiftf) * cr.height); randscale = theRNG().uniform( 0., maxscalef ); cr.x -= (int) ( 0.5 * randscale * cr.width ); cr.y -= (int) ( 0.5 * randscale * cr.height ); cr.width = (int) ((1.0 + randscale) * cr.width ); cr.height = (int) ((1.0 + randscale) * cr.height); scale = MAX( ((float) cr.width) / background.cols, ((float) cr.height) / background.rows ); roi.x = (int) (-0.5F * (scale * background.cols - cr.width) + cr.x); roi.y = (int) (-0.5F * (scale * background.rows - cr.height) + cr.y); roi.width = (int) (scale * background.cols); roi.height = (int) (scale * background.rows); Mat img( background.size(), CV_8UC1 ); Mat maskimg( background.size(), CV_8UC1 ); resize( data->img(roi & Rect(Point(0,0), data->img.size())), img, img.size(), 0, 0, INTER_LINEAR_EXACT); resize( data->maskimg(roi & Rect(Point(0, 0), data->maskimg.size())), maskimg, maskimg.size(), 0, 0, INTER_LINEAR_EXACT); forecolordev = theRNG().uniform( -maxintensitydev, maxintensitydev ); for( r = 0; r < img.rows; r++ ) { for( c = 0; c < img.cols; c++ ) { uchar& pbg = background.at(r, c); uchar& palpha = maskimg.at(r, c); uchar chartmp = (uchar) MAX( 0, MIN( 255, forecolordev + img.at(r, c)) ); if( inverse ) { chartmp ^= 0xFF; } pbg = (uchar) ((chartmp*palpha + (255 - palpha)*pbg) / 255); } } } static CvBackgroundData* icvCreateBackgroundData( const char* filename, Size winsize ) { CvBackgroundData* data = NULL; const char* dir = NULL; char full[PATH_MAX]; char* imgfilename = NULL; size_t datasize = 0; int count = 0; FILE* input = NULL; char* tmp = NULL; int len = 0; CV_Assert( filename != NULL ); dir = strrchr( filename, '\\' ); if( dir == NULL ) { dir = strrchr( filename, '/' ); } if( dir == NULL ) { imgfilename = &(full[0]); } else { strncpy( &(full[0]), filename, (dir - filename + 1) ); imgfilename = &(full[(dir - filename + 1)]); } input = fopen( filename, "r" ); if( input != NULL ) { count = 0; datasize = 0; /* count */ while( !feof( input ) ) { *imgfilename = '\0'; if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input )) break; len = (int)strlen( imgfilename ); for( ; len > 0 && isspace(imgfilename[len-1]); len-- ) imgfilename[len-1] = '\0'; if( len > 0 ) { if( (*imgfilename) == '#' ) continue; /* comment */ count++; datasize += sizeof( char ) * (strlen( &(full[0]) ) + 1); } } if( count > 0 ) { //rewind( input ); fseek( input, 0, SEEK_SET ); datasize += sizeof( *data ) + sizeof( char* ) * count; data = (CvBackgroundData*) fastMalloc( datasize ); memset( (void*) data, 0, datasize ); data->count = count; data->filename = (char**) (data + 1); data->last = 0; data->round = 0; data->winsize = winsize; tmp = (char*) (data->filename + data->count); count = 0; while( !feof( input ) ) { *imgfilename = '\0'; if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input )) break; len = (int)strlen( imgfilename ); if( len > 0 && imgfilename[len-1] == '\n' ) imgfilename[len-1] = 0, len--; if( len > 0 ) { if( (*imgfilename) == '#' ) continue; /* comment */ data->filename[count++] = tmp; strcpy( tmp, &(full[0]) ); tmp += strlen( &(full[0]) ) + 1; } } } fclose( input ); } return data; } static CvBackgroundReader* icvCreateBackgroundReader() { CvBackgroundReader* reader = NULL; reader = new CvBackgroundReader; reader->scale = 1.0F; reader->scalefactor = 1.4142135623730950488016887242097F; reader->stepfactor = 0.5F; return reader; } static void icvGetNextFromBackgroundData( CvBackgroundData* data, CvBackgroundReader* reader ) { Mat img; int round = 0; int i = 0; Point offset; CV_Assert( data != NULL && reader != NULL ); #ifdef CV_OPENMP #pragma omp critical(c_background_data) #endif /* CV_OPENMP */ { for( i = 0; i < data->count; i++ ) { round = data->round; data->last = theRNG().uniform( 0, RAND_MAX ) % data->count; #ifdef CV_VERBOSE printf( "Open background image: %s\n", data->filename[data->last] ); #endif /* CV_VERBOSE */ img = imread( data->filename[data->last], IMREAD_GRAYSCALE ); if( img.empty() ) continue; data->round += data->last / data->count; data->round = data->round % (data->winsize.width * data->winsize.height); offset.x = round % data->winsize.width; offset.y = round / data->winsize.width; offset.x = MIN( offset.x, img.cols - data->winsize.width ); offset.y = MIN( offset.y, img.rows - data->winsize.height ); if( !img.empty() && img.type() == CV_8UC1 && offset.x >= 0 && offset.y >= 0 ) { break; } img = Mat(); } } if( img.empty() ) { /* no appropriate image */ #ifdef CV_VERBOSE printf( "Invalid background description file.\n" ); #endif /* CV_VERBOSE */ CV_Assert( 0 ); exit( 1 ); } reader->src = img; //reader->offset.x = round % data->winsize.width; //reader->offset.y = round / data->winsize.width; reader->offset = offset; reader->point = reader->offset; reader->scale = MAX( ((float) data->winsize.width + reader->point.x) / ((float) reader->src.cols), ((float) data->winsize.height + reader->point.y) / ((float) reader->src.rows) ); resize( reader->src, reader->img, Size((int)(reader->scale * reader->src.cols + 0.5F), (int)(reader->scale * reader->src.rows + 0.5F)), 0, 0, INTER_LINEAR_EXACT); } /* * icvGetBackgroundImage * * Get an image from background * must be allocated and have size, previously passed to icvInitBackgroundReaders * * Usage example: * icvInitBackgroundReaders( "bg.txt", cvSize( 24, 24 ) ); * ... * #pragma omp parallel * { * ... * icvGetBackgroundImage( cvbgdata, cvbgreader, img ); * ... * } * ... * icvDestroyBackgroundReaders(); */ static void icvGetBackgroundImage( CvBackgroundData* data, CvBackgroundReader* reader, Mat& img ) { CV_Assert( data != NULL && reader != NULL ); if( reader->img.empty() ) { icvGetNextFromBackgroundData( data, reader ); } img = reader->img(Rect(reader->point.x, reader->point.y, data->winsize.width, data->winsize.height)).clone(); if( (int) ( reader->point.x + (1.0F + reader->stepfactor ) * data->winsize.width ) < reader->img.cols ) { reader->point.x += (int) (reader->stepfactor * data->winsize.width); } else { reader->point.x = reader->offset.x; if( (int) ( reader->point.y + (1.0F + reader->stepfactor ) * data->winsize.height ) < reader->img.rows ) { reader->point.y += (int) (reader->stepfactor * data->winsize.height); } else { reader->point.y = reader->offset.y; reader->scale *= reader->scalefactor; if( reader->scale <= 1.0F ) { resize(reader->src, reader->img, Size((int)(reader->scale * reader->src.cols), (int)(reader->scale * reader->src.rows)), 0, 0, INTER_LINEAR_EXACT); } else { icvGetNextFromBackgroundData( data, reader ); } } } } /* * icvInitBackgroundReaders * * Initialize background reading process. * and are initialized. * Must be called before any usage of background * * filename - name of background description file * winsize - size of images will be obtained from background * * return 1 on success, 0 otherwise. */ static int icvInitBackgroundReaders( const char* filename, Size winsize ) { if( cvbgdata == NULL && filename != NULL ) { cvbgdata = icvCreateBackgroundData( filename, winsize ); } if( cvbgdata ) { #ifdef CV_OPENMP #pragma omp parallel #endif /* CV_OPENMP */ { #ifdef CV_OPENMP #pragma omp critical(c_create_bg_data) #endif /* CV_OPENMP */ { if( cvbgreader == NULL ) { cvbgreader = icvCreateBackgroundReader(); } } } } return (cvbgdata != NULL); } /* * icvDestroyBackgroundReaders * * Finish background reading process */ static void icvDestroyBackgroundReaders() { /* release background reader in each thread */ #ifdef CV_OPENMP #pragma omp parallel #endif /* CV_OPENMP */ { #ifdef CV_OPENMP #pragma omp critical(c_release_bg_data) #endif /* CV_OPENMP */ { if( cvbgreader != NULL ) { delete cvbgreader; cvbgreader = NULL; } } } if( cvbgdata != NULL ) { fastFree(cvbgdata); cvbgdata = NULL; } } void cvCreateTrainingSamples( const char* filename, const char* imgfilename, int bgcolor, int bgthreshold, const char* bgfilename, int count, int invert, int maxintensitydev, double maxxangle, double maxyangle, double maxzangle, int showsamples, int winwidth, int winheight ) { CvSampleDistortionData data; CV_Assert( filename != NULL ); CV_Assert( imgfilename != NULL ); if( !icvMkDir( filename ) ) { fprintf( stderr, "Unable to create output file: %s\n", filename ); return; } if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) ) { FILE* output = NULL; output = fopen( filename, "wb" ); if( output != NULL ) { int i; int inverse; const int hasbg = (bgfilename != NULL && icvInitBackgroundReaders( bgfilename, Size( winwidth,winheight ) ) ); Mat sample( winheight, winwidth, CV_8UC1 ); icvWriteVecHeader( output, count, sample.cols, sample.rows ); if( showsamples ) { namedWindow( "Sample", WINDOW_AUTOSIZE ); } inverse = invert; for( i = 0; i < count; i++ ) { if( hasbg ) { icvGetBackgroundImage( cvbgdata, cvbgreader, sample ); } else { sample = bgcolor; } if( invert == CV_RANDOM_INVERT ) { inverse = theRNG().uniform( 0, 2 ); } icvPlaceDistortedSample( sample, inverse, maxintensitydev, maxxangle, maxyangle, maxzangle, 0 /* nonzero means placing image without cut offs */, 0.0 /* nonzero adds random shifting */, 0.0 /* nonzero adds random scaling */, &data ); if( showsamples ) { imshow( "Sample", sample ); if( (waitKey( 0 ) & 0xFF) == 27 ) { showsamples = 0; } } icvWriteVecSample( output, sample ); #ifdef CV_VERBOSE if( i % 500 == 0 ) { printf( "\r%3d%%", 100 * i / count ); } #endif /* CV_VERBOSE */ } icvDestroyBackgroundReaders(); fclose( output ); } /* if( output != NULL ) */ } #ifdef CV_VERBOSE printf( "\r \r" ); #endif /* CV_VERBOSE */ } #define CV_INFO_FILENAME "info.dat" void cvCreateTestSamples( const char* infoname, const char* imgfilename, int bgcolor, int bgthreshold, const char* bgfilename, int count, int invert, int maxintensitydev, double maxxangle, double maxyangle, double maxzangle, int showsamples, int winwidth, int winheight, double maxscale ) { CvSampleDistortionData data; CV_Assert( infoname != NULL ); CV_Assert( imgfilename != NULL ); CV_Assert( bgfilename != NULL ); if( !icvMkDir( infoname ) ) { #if CV_VERBOSE fprintf( stderr, "Unable to create directory hierarchy: %s\n", infoname ); #endif /* CV_VERBOSE */ return; } if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) ) { char fullname[PATH_MAX]; char* filename; FILE* info; if( icvInitBackgroundReaders( bgfilename, Size( 10, 10 ) ) ) { int i; int x, y, width, height; float scale; int inverse; if( showsamples ) { namedWindow( "Image", WINDOW_AUTOSIZE ); } info = fopen( infoname, "w" ); strcpy( fullname, infoname ); filename = strrchr( fullname, '\\' ); if( filename == NULL ) { filename = strrchr( fullname, '/' ); } if( filename == NULL ) { filename = fullname; } else { filename++; // character after last / or \ } count = MIN( count, cvbgdata->count ); inverse = invert; for( i = 0; i < count; i++ ) { icvGetNextFromBackgroundData( cvbgdata, cvbgreader ); if( maxscale < 0.0 ) { maxscale = MIN( 0.7F * cvbgreader->src.cols / winwidth, 0.7F * cvbgreader->src.rows / winheight ); } if( maxscale < 1.0F ) continue; scale = theRNG().uniform( 1.0F, (float)maxscale ); width = (int) (scale * winwidth); height = (int) (scale * winheight); x = (int) ( theRNG().uniform( 0.1, 0.8 ) * (cvbgreader->src.cols - width)); y = (int) ( theRNG().uniform( 0.1, 0.8 ) * (cvbgreader->src.rows - height)); if( invert == CV_RANDOM_INVERT ) { inverse = theRNG().uniform( 0, 2 ); } icvPlaceDistortedSample( cvbgreader->src(Rect(x, y, width, height)), inverse, maxintensitydev, maxxangle, maxyangle, maxzangle, 1, 0.0, 0.0, &data ); snprintf( filename, sizeof(fullname) - (filename - fullname), "%04d_%04d_%04d_%04d_%04d.jpg", (i + 1), x, y, width, height ); if( info ) { fprintf( info, "%s %d %d %d %d %d\n", filename, 1, x, y, width, height ); } imwrite( fullname, cvbgreader->src ); if( showsamples ) { imshow( "Image", cvbgreader->src ); if( (waitKey( 0 ) & 0xFF) == 27 ) { showsamples = 0; } } } if( info ) fclose( info ); icvDestroyBackgroundReaders(); } } } int cvCreateTrainingSamplesFromInfo( const char* infoname, const char* vecfilename, int num, int showsamples, int winwidth, int winheight ) { char fullname[PATH_MAX]; char* filename; FILE* info; FILE* vec; int line; int error; int i; int x, y, width, height; int total; CV_Assert( infoname != NULL ); CV_Assert( vecfilename != NULL ); total = 0; if( !icvMkDir( vecfilename ) ) { #if CV_VERBOSE fprintf( stderr, "Unable to create directory hierarchy: %s\n", vecfilename ); #endif /* CV_VERBOSE */ return total; } info = fopen( infoname, "r" ); if( info == NULL ) { #if CV_VERBOSE fprintf( stderr, "Unable to open file: %s\n", infoname ); #endif /* CV_VERBOSE */ return total; } vec = fopen( vecfilename, "wb" ); if( vec == NULL ) { #if CV_VERBOSE fprintf( stderr, "Unable to open file: %s\n", vecfilename ); #endif /* CV_VERBOSE */ fclose( info ); return total; } icvWriteVecHeader( vec, num, winwidth, winheight ); if( showsamples ) { namedWindow( "Sample", WINDOW_AUTOSIZE ); } strcpy( fullname, infoname ); filename = strrchr( fullname, '\\' ); if( filename == NULL ) { filename = strrchr( fullname, '/' ); } if( filename == NULL ) { filename = fullname; } else { filename++; } for( line = 1, error = 0, total = 0; total < num ;line++ ) { Mat src; int count; if(fscanf(info, "%s %d", filename, &count) == 2) { src = imread( fullname, IMREAD_GRAYSCALE ); if(src.empty()) { #if CV_VERBOSE fprintf( stderr, "Unable to open image: %s\n", fullname ); #endif /* CV_VERBOSE */ } } for( i = 0; (i < count) && (total < num); i++, total++ ) { error = ( fscanf( info, "%d %d %d %d", &x, &y, &width, &height ) != 4 ); if( error ) break; Mat sample; resize( src(Rect(x, y, width, height)), sample, Size(winwidth, winheight), 0, 0, width >= winwidth && height >= winheight ? INTER_AREA : INTER_LINEAR_EXACT ); if( showsamples ) { imshow( "Sample", sample ); if( (waitKey( 0 ) & 0xFF) == 27 ) { showsamples = 0; } } icvWriteVecSample( vec, sample ); } if( error ) { #if CV_VERBOSE fprintf( stderr, "%s(%d) : parse error", infoname, line ); #endif /* CV_VERBOSE */ break; } } fclose( vec ); fclose( info ); return total; } typedef struct CvVecFile { FILE* input; int count; int vecsize; int last; } CvVecFile; static int icvGetTraininDataFromVec( Mat& img, CvVecFile& userdata ) { AutoBuffer vector(userdata.vecsize); uchar tmp = 0; int r = 0; int c = 0; CV_Assert( img.rows * img.cols == userdata.vecsize ); size_t elements_read = fread( &tmp, sizeof( tmp ), 1, userdata.input ); CV_Assert(elements_read == 1); elements_read = fread(vector.data(), sizeof(short), userdata.vecsize, userdata.input); CV_Assert(elements_read == (size_t)userdata.vecsize); if( feof( userdata.input ) || userdata.last++ >= userdata.count ) { return 0; } for( r = 0; r < img.rows; r++ ) { for( c = 0; c < img.cols; c++ ) { img.at(r, c) = (uchar) ( vector[r * img.cols + c] ); } } return 1; } void cvShowVecSamples( const char* filename, int winwidth, int winheight, double scale ) { CvVecFile file; short tmp; int i; tmp = 0; file.input = fopen( filename, "rb" ); if( file.input != NULL ) { size_t elements_read1 = fread( &file.count, sizeof( file.count ), 1, file.input ); size_t elements_read2 = fread( &file.vecsize, sizeof( file.vecsize ), 1, file.input ); size_t elements_read3 = fread( &tmp, sizeof( tmp ), 1, file.input ); size_t elements_read4 = fread( &tmp, sizeof( tmp ), 1, file.input ); CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1); if( file.vecsize != winwidth * winheight ) { int guessed_w = 0; int guessed_h = 0; fprintf( stderr, "Warning: specified sample width=%d and height=%d " "does not correspond to .vec file vector size=%d.\n", winwidth, winheight, file.vecsize ); if( file.vecsize > 0 ) { guessed_w = cvFloor( sqrt( (float) file.vecsize ) ); if( guessed_w > 0 ) { guessed_h = file.vecsize / guessed_w; } } if( guessed_w <= 0 || guessed_h <= 0 || guessed_w * guessed_h != file.vecsize) { fprintf( stderr, "Error: failed to guess sample width and height\n" ); fclose( file.input ); return; } else { winwidth = guessed_w; winheight = guessed_h; fprintf( stderr, "Guessed width=%d, guessed height=%d\n", winwidth, winheight ); } } if( !feof( file.input ) && scale > 0 ) { file.last = 0; namedWindow( "Sample", WINDOW_AUTOSIZE ); for( i = 0; i < file.count; i++ ) { Mat sample(winheight, winwidth, CV_8UC1); icvGetTraininDataFromVec( sample, file ); if( scale != 1.0 ) resize( sample, sample, Size(MAX(1, cvCeil(scale * winwidth)), MAX(1, cvCeil(scale * winheight))), 0, 0, INTER_LINEAR_EXACT); imshow( "Sample", sample ); if( waitKey( 0 ) == 27 ) break; } } fclose( file.input ); } }