#!/usr/bin/env python ''' Multiscale Turing Patterns generator ==================================== Inspired by http://www.jonathanmccabe.com/Cyclic_Symmetric_Multi-Scale_Turing_Patterns.pdf ''' # Python 2/3 compatibility from __future__ import print_function import sys PY3 = sys.version_info[0] == 3 if PY3: xrange = range import numpy as np import cv2 as cv from common import draw_str import getopt, sys from itertools import count help_message = ''' USAGE: turing.py [-o ] Press ESC to stop. ''' def main(): print(help_message) w, h = 512, 512 args, _args_list = getopt.getopt(sys.argv[1:], 'o:', []) args = dict(args) out = None if '-o' in args: fn = args['-o'] out = cv.VideoWriter(args['-o'], cv.VideoWriter_fourcc(*'DIB '), 30.0, (w, h), False) print('writing %s ...' % fn) a = np.zeros((h, w), np.float32) cv.randu(a, np.array([0]), np.array([1])) def process_scale(a_lods, lod): d = a_lods[lod] - cv.pyrUp(a_lods[lod+1]) for _i in xrange(lod): d = cv.pyrUp(d) v = cv.GaussianBlur(d*d, (3, 3), 0) return np.sign(d), v scale_num = 6 for frame_i in count(): a_lods = [a] for i in xrange(scale_num): a_lods.append(cv.pyrDown(a_lods[-1])) ms, vs = [], [] for i in xrange(1, scale_num): m, v = process_scale(a_lods, i) ms.append(m) vs.append(v) mi = np.argmin(vs, 0) a += np.choose(mi, ms) * 0.025 a = (a-a.min()) / a.ptp() if out: out.write(a) vis = a.copy() draw_str(vis, (20, 20), 'frame %d' % frame_i) cv.imshow('a', vis) if cv.waitKey(5) == 27: break print('Done') if __name__ == '__main__': print(__doc__) main() cv.destroyAllWindows()