#!/usr/bin/python ''' This example illustrates how to use cv.HoughCircles() function. Usage: houghcircles.py [] image argument defaults to board.jpg ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv import sys def main(): try: fn = sys.argv[1] except IndexError: fn = 'board.jpg' src = cv.imread(cv.samples.findFile(fn)) img = cv.cvtColor(src, cv.COLOR_BGR2GRAY) img = cv.medianBlur(img, 5) cimg = src.copy() # numpy function circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30) if circles is not None: # Check if circles have been found and only then iterate over these and add them to the image circles = np.uint16(np.around(circles)) _a, b, _c = circles.shape for i in range(b): cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv.LINE_AA) cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv.LINE_AA) # draw center of circle cv.imshow("detected circles", cimg) cv.imshow("source", src) cv.waitKey(0) print('Done') if __name__ == '__main__': print(__doc__) main() cv.destroyAllWindows()