/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include namespace cv { template static inline Scalar rawToScalar(const T& v) { Scalar s; typedef typename DataType::channel_type T1; int i, n = DataType::channels; for( i = 0; i < n; i++ ) s.val[i] = ((T1*)&v)[i]; return s; } /****************************************************************************************\ * sum * \****************************************************************************************/ template static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn ) { const T* src = src0; if( !mask ) { int i=0; int k = cn % 4; if( k == 1 ) { ST s0 = dst[0]; #if CV_ENABLE_UNROLLED for(; i <= len - 4; i += 4, src += cn*4 ) s0 += src[0] + src[cn] + src[cn*2] + src[cn*3]; #endif for( ; i < len; i++, src += cn ) s0 += src[0]; dst[0] = s0; } else if( k == 2 ) { ST s0 = dst[0], s1 = dst[1]; for( i = 0; i < len; i++, src += cn ) { s0 += src[0]; s1 += src[1]; } dst[0] = s0; dst[1] = s1; } else if( k == 3 ) { ST s0 = dst[0], s1 = dst[1], s2 = dst[2]; for( i = 0; i < len; i++, src += cn ) { s0 += src[0]; s1 += src[1]; s2 += src[2]; } dst[0] = s0; dst[1] = s1; dst[2] = s2; } for( ; k < cn; k += 4 ) { src = src0 + k; ST s0 = dst[k], s1 = dst[k+1], s2 = dst[k+2], s3 = dst[k+3]; for( i = 0; i < len; i++, src += cn ) { s0 += src[0]; s1 += src[1]; s2 += src[2]; s3 += src[3]; } dst[k] = s0; dst[k+1] = s1; dst[k+2] = s2; dst[k+3] = s3; } return len; } int i, nzm = 0; if( cn == 1 ) { ST s = dst[0]; for( i = 0; i < len; i++ ) if( mask[i] ) { s += src[i]; nzm++; } dst[0] = s; } else if( cn == 3 ) { ST s0 = dst[0], s1 = dst[1], s2 = dst[2]; for( i = 0; i < len; i++, src += 3 ) if( mask[i] ) { s0 += src[0]; s1 += src[1]; s2 += src[2]; nzm++; } dst[0] = s0; dst[1] = s1; dst[2] = s2; } else { for( i = 0; i < len; i++, src += cn ) if( mask[i] ) { int k = 0; #if CV_ENABLE_UNROLLED for( ; k <= cn - 4; k += 4 ) { ST s0, s1; s0 = dst[k] + src[k]; s1 = dst[k+1] + src[k+1]; dst[k] = s0; dst[k+1] = s1; s0 = dst[k+2] + src[k+2]; s1 = dst[k+3] + src[k+3]; dst[k+2] = s0; dst[k+3] = s1; } #endif for( ; k < cn; k++ ) dst[k] += src[k]; nzm++; } } return nzm; } static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum8s( const schar* src, const uchar* mask, int* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum16u( const ushort* src, const uchar* mask, int* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum16s( const short* src, const uchar* mask, int* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum32s( const int* src, const uchar* mask, double* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum32f( const float* src, const uchar* mask, double* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum64f( const double* src, const uchar* mask, double* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } typedef int (*SumFunc)(const uchar*, const uchar* mask, uchar*, int, int); static SumFunc sumTab[] = { (SumFunc)GET_OPTIMIZED(sum8u), (SumFunc)sum8s, (SumFunc)sum16u, (SumFunc)sum16s, (SumFunc)sum32s, (SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f, 0 }; template static int countNonZero_(const T* src, int len ) { int i=0, nz = 0; #if CV_ENABLE_UNROLLED for(; i <= len - 4; i += 4 ) nz += (src[i] != 0) + (src[i+1] != 0) + (src[i+2] != 0) + (src[i+3] != 0); #endif for( ; i < len; i++ ) nz += src[i] != 0; return nz; } static int countNonZero8u( const uchar* src, int len ) { int i=0, nz = 0; #if CV_SSE2 if(USE_SSE2)//5x-6x { __m128i pattern = _mm_setzero_si128 (); static uchar tab[256]; static volatile bool initialized = false; if( !initialized ) { // we compute inverse popcount table, // since we pass (img[x] == 0) mask as index in the table. for( int j = 0; j < 256; j++ ) { int val = 0; for( int mask = 1; mask < 256; mask += mask ) val += (j & mask) == 0; tab[j] = (uchar)val; } initialized = true; } for (; i<=len-16; i+=16) { __m128i r0 = _mm_loadu_si128((const __m128i*)(src+i)); int val = _mm_movemask_epi8(_mm_cmpeq_epi8(r0, pattern)); nz += tab[val & 255] + tab[val >> 8]; } } #endif for( ; i < len; i++ ) nz += src[i] != 0; return nz; } static int countNonZero16u( const ushort* src, int len ) { return countNonZero_(src, len); } static int countNonZero32s( const int* src, int len ) { return countNonZero_(src, len); } static int countNonZero32f( const float* src, int len ) { return countNonZero_(src, len); } static int countNonZero64f( const double* src, int len ) { return countNonZero_(src, len); } typedef int (*CountNonZeroFunc)(const uchar*, int); static CountNonZeroFunc countNonZeroTab[] = { (CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero32s), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero32f), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero64f), 0 }; template static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int len, int cn ) { const T* src = src0; if( !mask ) { int i; int k = cn % 4; if( k == 1 ) { ST s0 = sum[0]; SQT sq0 = sqsum[0]; for( i = 0; i < len; i++, src += cn ) { T v = src[0]; s0 += v; sq0 += (SQT)v*v; } sum[0] = s0; sqsum[0] = sq0; } else if( k == 2 ) { ST s0 = sum[0], s1 = sum[1]; SQT sq0 = sqsum[0], sq1 = sqsum[1]; for( i = 0; i < len; i++, src += cn ) { T v0 = src[0], v1 = src[1]; s0 += v0; sq0 += (SQT)v0*v0; s1 += v1; sq1 += (SQT)v1*v1; } sum[0] = s0; sum[1] = s1; sqsum[0] = sq0; sqsum[1] = sq1; } else if( k == 3 ) { ST s0 = sum[0], s1 = sum[1], s2 = sum[2]; SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2]; for( i = 0; i < len; i++, src += cn ) { T v0 = src[0], v1 = src[1], v2 = src[2]; s0 += v0; sq0 += (SQT)v0*v0; s1 += v1; sq1 += (SQT)v1*v1; s2 += v2; sq2 += (SQT)v2*v2; } sum[0] = s0; sum[1] = s1; sum[2] = s2; sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2; } for( ; k < cn; k += 4 ) { src = src0 + k; ST s0 = sum[k], s1 = sum[k+1], s2 = sum[k+2], s3 = sum[k+3]; SQT sq0 = sqsum[k], sq1 = sqsum[k+1], sq2 = sqsum[k+2], sq3 = sqsum[k+3]; for( i = 0; i < len; i++, src += cn ) { T v0, v1; v0 = src[0], v1 = src[1]; s0 += v0; sq0 += (SQT)v0*v0; s1 += v1; sq1 += (SQT)v1*v1; v0 = src[2], v1 = src[3]; s2 += v0; sq2 += (SQT)v0*v0; s3 += v1; sq3 += (SQT)v1*v1; } sum[k] = s0; sum[k+1] = s1; sum[k+2] = s2; sum[k+3] = s3; sqsum[k] = sq0; sqsum[k+1] = sq1; sqsum[k+2] = sq2; sqsum[k+3] = sq3; } return len; } int i, nzm = 0; if( cn == 1 ) { ST s0 = sum[0]; SQT sq0 = sqsum[0]; for( i = 0; i < len; i++ ) if( mask[i] ) { T v = src[i]; s0 += v; sq0 += (SQT)v*v; nzm++; } sum[0] = s0; sqsum[0] = sq0; } else if( cn == 3 ) { ST s0 = sum[0], s1 = sum[1], s2 = sum[2]; SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2]; for( i = 0; i < len; i++, src += 3 ) if( mask[i] ) { T v0 = src[0], v1 = src[1], v2 = src[2]; s0 += v0; sq0 += (SQT)v0*v0; s1 += v1; sq1 += (SQT)v1*v1; s2 += v2; sq2 += (SQT)v2*v2; nzm++; } sum[0] = s0; sum[1] = s1; sum[2] = s2; sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2; } else { for( i = 0; i < len; i++, src += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) { T v = src[k]; ST s = sum[k] + v; SQT sq = sqsum[k] + (SQT)v*v; sum[k] = s; sqsum[k] = sq; } nzm++; } } return nzm; } static int sqsum8u( const uchar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum8s( const schar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum16u( const ushort* src, const uchar* mask, int* sum, double* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum16s( const short* src, const uchar* mask, int* sum, double* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum32s( const int* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum32f( const float* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum64f( const double* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } typedef int (*SumSqrFunc)(const uchar*, const uchar* mask, uchar*, uchar*, int, int); static SumSqrFunc sumSqrTab[] = { (SumSqrFunc)GET_OPTIMIZED(sqsum8u), (SumSqrFunc)sqsum8s, (SumSqrFunc)sqsum16u, (SumSqrFunc)sqsum16s, (SumSqrFunc)sqsum32s, (SumSqrFunc)GET_OPTIMIZED(sqsum32f), (SumSqrFunc)sqsum64f, 0 }; } cv::Scalar cv::sum( InputArray _src ) { Mat src = _src.getMat(); int k, cn = src.channels(), depth = src.depth(); SumFunc func = sumTab[depth]; CV_Assert( cn <= 4 && func != 0 ); const Mat* arrays[] = {&src, 0}; uchar* ptrs[1]; NAryMatIterator it(arrays, ptrs); Scalar s; int total = (int)it.size, blockSize = total, intSumBlockSize = 0; int j, count = 0; AutoBuffer _buf; int* buf = (int*)&s[0]; size_t esz = 0; bool blockSum = depth < CV_32S; if( blockSum ) { intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15); blockSize = std::min(blockSize, intSumBlockSize); _buf.allocate(cn); buf = _buf; for( k = 0; k < cn; k++ ) buf[k] = 0; esz = src.elemSize(); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( j = 0; j < total; j += blockSize ) { int bsz = std::min(total - j, blockSize); func( ptrs[0], 0, (uchar*)buf, bsz, cn ); count += bsz; if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) { for( k = 0; k < cn; k++ ) { s[k] += buf[k]; buf[k] = 0; } count = 0; } ptrs[0] += bsz*esz; } } return s; } int cv::countNonZero( InputArray _src ) { Mat src = _src.getMat(); CountNonZeroFunc func = countNonZeroTab[src.depth()]; CV_Assert( src.channels() == 1 && func != 0 ); const Mat* arrays[] = {&src, 0}; uchar* ptrs[1]; NAryMatIterator it(arrays, ptrs); int total = (int)it.size, nz = 0; for( size_t i = 0; i < it.nplanes; i++, ++it ) nz += func( ptrs[0], total ); return nz; } cv::Scalar cv::mean( InputArray _src, InputArray _mask ) { Mat src = _src.getMat(), mask = _mask.getMat(); CV_Assert( mask.empty() || mask.type() == CV_8U ); int k, cn = src.channels(), depth = src.depth(); SumFunc func = sumTab[depth]; CV_Assert( cn <= 4 && func != 0 ); const Mat* arrays[] = {&src, &mask, 0}; uchar* ptrs[2]; NAryMatIterator it(arrays, ptrs); Scalar s; int total = (int)it.size, blockSize = total, intSumBlockSize = 0; int j, count = 0; AutoBuffer _buf; int* buf = (int*)&s[0]; bool blockSum = depth <= CV_16S; size_t esz = 0, nz0 = 0; if( blockSum ) { intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15); blockSize = std::min(blockSize, intSumBlockSize); _buf.allocate(cn); buf = _buf; for( k = 0; k < cn; k++ ) buf[k] = 0; esz = src.elemSize(); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( j = 0; j < total; j += blockSize ) { int bsz = std::min(total - j, blockSize); int nz = func( ptrs[0], ptrs[1], (uchar*)buf, bsz, cn ); count += nz; nz0 += nz; if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) { for( k = 0; k < cn; k++ ) { s[k] += buf[k]; buf[k] = 0; } count = 0; } ptrs[0] += bsz*esz; if( ptrs[1] ) ptrs[1] += bsz; } } return s*(nz0 ? 1./nz0 : 0); } void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask ) { Mat src = _src.getMat(), mask = _mask.getMat(); CV_Assert( mask.empty() || mask.type() == CV_8U ); int k, cn = src.channels(), depth = src.depth(); SumSqrFunc func = sumSqrTab[depth]; CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &mask, 0}; uchar* ptrs[2]; NAryMatIterator it(arrays, ptrs); int total = (int)it.size, blockSize = total, intSumBlockSize = 0; int j, count = 0, nz0 = 0; AutoBuffer _buf(cn*4); double *s = (double*)_buf, *sq = s + cn; int *sbuf = (int*)s, *sqbuf = (int*)sq; bool blockSum = depth <= CV_16S, blockSqSum = depth <= CV_8S; size_t esz = 0; for( k = 0; k < cn; k++ ) s[k] = sq[k] = 0; if( blockSum ) { intSumBlockSize = 1 << 15; blockSize = std::min(blockSize, intSumBlockSize); sbuf = (int*)(sq + cn); if( blockSqSum ) sqbuf = sbuf + cn; for( k = 0; k < cn; k++ ) sbuf[k] = sqbuf[k] = 0; esz = src.elemSize(); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( j = 0; j < total; j += blockSize ) { int bsz = std::min(total - j, blockSize); int nz = func( ptrs[0], ptrs[1], (uchar*)sbuf, (uchar*)sqbuf, bsz, cn ); count += nz; nz0 += nz; if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) { for( k = 0; k < cn; k++ ) { s[k] += sbuf[k]; sbuf[k] = 0; } if( blockSqSum ) { for( k = 0; k < cn; k++ ) { sq[k] += sqbuf[k]; sqbuf[k] = 0; } } count = 0; } ptrs[0] += bsz*esz; if( ptrs[1] ) ptrs[1] += bsz; } } double scale = nz0 ? 1./nz0 : 0.; for( k = 0; k < cn; k++ ) { s[k] *= scale; sq[k] = std::sqrt(std::max(sq[k]*scale - s[k]*s[k], 0.)); } for( j = 0; j < 2; j++ ) { const double* sptr = j == 0 ? s : sq; _OutputArray _dst = j == 0 ? _mean : _sdv; if( !_dst.needed() ) continue; if( !_dst.fixedSize() ) _dst.create(cn, 1, CV_64F, -1, true); Mat dst = _dst.getMat(); int dcn = (int)dst.total(); CV_Assert( dst.type() == CV_64F && dst.isContinuous() && (dst.cols == 1 || dst.rows == 1) && dcn >= cn ); double* dptr = dst.ptr(); for( k = 0; k < cn; k++ ) dptr[k] = sptr[k]; for( ; k < dcn; k++ ) dptr[k] = 0; } } /****************************************************************************************\ * minMaxLoc * \****************************************************************************************/ namespace cv { template static void minMaxIdx_( const T* src, const uchar* mask, WT* _minVal, WT* _maxVal, size_t* _minIdx, size_t* _maxIdx, int len, size_t startIdx ) { WT minVal = *_minVal, maxVal = *_maxVal; size_t minIdx = *_minIdx, maxIdx = *_maxIdx; if( !mask ) { for( int i = 0; i < len; i++ ) { T val = src[i]; if( val < minVal ) { minVal = val; minIdx = startIdx + i; } if( val > maxVal ) { maxVal = val; maxIdx = startIdx + i; } } } else { for( int i = 0; i < len; i++ ) { T val = src[i]; if( mask[i] && val < minVal ) { minVal = val; minIdx = startIdx + i; } if( mask[i] && val > maxVal ) { maxVal = val; maxIdx = startIdx + i; } } } *_minIdx = minIdx; *_maxIdx = maxIdx; *_minVal = minVal; *_maxVal = maxVal; } static void minMaxIdx_8u(const uchar* src, const uchar* mask, int* minval, int* maxval, size_t* minidx, size_t* maxidx, int len, size_t startidx ) { minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } static void minMaxIdx_8s(const schar* src, const uchar* mask, int* minval, int* maxval, size_t* minidx, size_t* maxidx, int len, size_t startidx ) { minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } static void minMaxIdx_16u(const ushort* src, const uchar* mask, int* minval, int* maxval, size_t* minidx, size_t* maxidx, int len, size_t startidx ) { minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } static void minMaxIdx_16s(const short* src, const uchar* mask, int* minval, int* maxval, size_t* minidx, size_t* maxidx, int len, size_t startidx ) { minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } static void minMaxIdx_32s(const int* src, const uchar* mask, int* minval, int* maxval, size_t* minidx, size_t* maxidx, int len, size_t startidx ) { minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } static void minMaxIdx_32f(const float* src, const uchar* mask, float* minval, float* maxval, size_t* minidx, size_t* maxidx, int len, size_t startidx ) { minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } static void minMaxIdx_64f(const double* src, const uchar* mask, double* minval, double* maxval, size_t* minidx, size_t* maxidx, int len, size_t startidx ) { minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } typedef void (*MinMaxIdxFunc)(const uchar*, const uchar*, int*, int*, size_t*, size_t*, int, size_t); static MinMaxIdxFunc minmaxTab[] = { (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8s), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16s), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32s), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32f), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_64f), 0 }; static void ofs2idx(const Mat& a, size_t ofs, int* idx) { int i, d = a.dims; if( ofs > 0 ) { ofs--; for( i = d-1; i >= 0; i-- ) { int sz = a.size[i]; idx[i] = (int)(ofs % sz); ofs /= sz; } } else { for( i = d-1; i >= 0; i-- ) idx[i] = -1; } } } void cv::minMaxIdx(InputArray _src, double* minVal, double* maxVal, int* minIdx, int* maxIdx, InputArray _mask) { Mat src = _src.getMat(), mask = _mask.getMat(); int depth = src.depth(), cn = src.channels(); CV_Assert( (cn == 1 && (mask.empty() || mask.type() == CV_8U)) || (cn >= 1 && mask.empty() && !minIdx && !maxIdx) ); MinMaxIdxFunc func = minmaxTab[depth]; CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &mask, 0}; uchar* ptrs[2]; NAryMatIterator it(arrays, ptrs); size_t minidx = 0, maxidx = 0; int iminval = INT_MAX, imaxval = INT_MIN; float fminval = FLT_MAX, fmaxval = -FLT_MAX; double dminval = DBL_MAX, dmaxval = -DBL_MAX; size_t startidx = 1; int *minval = &iminval, *maxval = &imaxval; int planeSize = (int)it.size*cn; if( depth == CV_32F ) minval = (int*)&fminval, maxval = (int*)&fmaxval; else if( depth == CV_64F ) minval = (int*)&dminval, maxval = (int*)&dmaxval; for( size_t i = 0; i < it.nplanes; i++, ++it, startidx += planeSize ) func( ptrs[0], ptrs[1], minval, maxval, &minidx, &maxidx, planeSize, startidx ); if( minidx == 0 ) dminval = dmaxval = 0; else if( depth == CV_32F ) dminval = fminval, dmaxval = fmaxval; else if( depth <= CV_32S ) dminval = iminval, dmaxval = imaxval; if( minVal ) *minVal = dminval; if( maxVal ) *maxVal = dmaxval; if( minIdx ) ofs2idx(src, minidx, minIdx); if( maxIdx ) ofs2idx(src, maxidx, maxIdx); } void cv::minMaxLoc( InputArray _img, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, InputArray mask ) { Mat img = _img.getMat(); CV_Assert(img.dims <= 2); minMaxIdx(_img, minVal, maxVal, (int*)minLoc, (int*)maxLoc, mask); if( minLoc ) std::swap(minLoc->x, minLoc->y); if( maxLoc ) std::swap(maxLoc->x, maxLoc->y); } /****************************************************************************************\ * norm * \****************************************************************************************/ namespace cv { float normL2Sqr_(const float* a, const float* b, int n) { int j = 0; float d = 0.f; #if CV_SSE if( USE_SSE2 ) { float CV_DECL_ALIGNED(16) buf[4]; __m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps(); for( ; j <= n - 8; j += 8 ) { __m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j)); __m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4)); d0 = _mm_add_ps(d0, _mm_mul_ps(t0, t0)); d1 = _mm_add_ps(d1, _mm_mul_ps(t1, t1)); } _mm_store_ps(buf, _mm_add_ps(d0, d1)); d = buf[0] + buf[1] + buf[2] + buf[3]; } else #endif { for( ; j <= n - 4; j += 4 ) { float t0 = a[j] - b[j], t1 = a[j+1] - b[j+1], t2 = a[j+2] - b[j+2], t3 = a[j+3] - b[j+3]; d += t0*t0 + t1*t1 + t2*t2 + t3*t3; } } for( ; j < n; j++ ) { float t = a[j] - b[j]; d += t*t; } return d; } float normL1_(const float* a, const float* b, int n) { int j = 0; float d = 0.f; #if CV_SSE if( USE_SSE2 ) { float CV_DECL_ALIGNED(16) buf[4]; static const int CV_DECL_ALIGNED(16) absbuf[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff}; __m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps(); __m128 absmask = _mm_load_ps((const float*)absbuf); for( ; j <= n - 8; j += 8 ) { __m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j)); __m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4)); d0 = _mm_add_ps(d0, _mm_and_ps(t0, absmask)); d1 = _mm_add_ps(d1, _mm_and_ps(t1, absmask)); } _mm_store_ps(buf, _mm_add_ps(d0, d1)); d = buf[0] + buf[1] + buf[2] + buf[3]; } else #endif { for( ; j <= n - 4; j += 4 ) { d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) + std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); } } for( ; j < n; j++ ) d += std::abs(a[j] - b[j]); return d; } int normL1_(const uchar* a, const uchar* b, int n) { int j = 0, d = 0; #if CV_SSE if( USE_SSE2 ) { __m128i d0 = _mm_setzero_si128(); for( ; j <= n - 16; j += 16 ) { __m128i t0 = _mm_loadu_si128((const __m128i*)(a + j)); __m128i t1 = _mm_loadu_si128((const __m128i*)(b + j)); d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1)); } for( ; j <= n - 4; j += 4 ) { __m128i t0 = _mm_cvtsi32_si128(*(const int*)(a + j)); __m128i t1 = _mm_cvtsi32_si128(*(const int*)(b + j)); d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1)); } d = _mm_cvtsi128_si32(_mm_add_epi32(d0, _mm_unpackhi_epi64(d0, d0))); } else #endif { for( ; j <= n - 4; j += 4 ) { d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) + std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); } } for( ; j < n; j++ ) d += std::abs(a[j] - b[j]); return d; } static const uchar popCountTable[] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; static const uchar popCountTable2[] = { 0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4 }; static const uchar popCountTable4[] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }; static int normHamming(const uchar* a, int n) { int i = 0, result = 0; #if CV_NEON if (CPU_HAS_NEON_FEATURE) { uint32x4_t bits = vmovq_n_u32(0); for (; i <= n - 16; i += 16) { uint8x16_t A_vec = vld1q_u8 (a + i); uint8x16_t bitsSet = vcntq_u8 (A_vec); uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet); uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8); bits = vaddq_u32(bits, bitSet4); } uint64x2_t bitSet2 = vpaddlq_u32 (bits); result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0); result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2); } else #endif for( ; i <= n - 4; i += 4 ) result += popCountTable[a[i]] + popCountTable[a[i+1]] + popCountTable[a[i+2]] + popCountTable[a[i+3]]; for( ; i < n; i++ ) result += popCountTable[a[i]]; return result; } int normHamming(const uchar* a, const uchar* b, int n) { int i = 0, result = 0; #if CV_NEON if (CPU_HAS_NEON_FEATURE) { uint32x4_t bits = vmovq_n_u32(0); for (; i <= n - 16; i += 16) { uint8x16_t A_vec = vld1q_u8 (a + i); uint8x16_t B_vec = vld1q_u8 (b + i); uint8x16_t AxorB = veorq_u8 (A_vec, B_vec); uint8x16_t bitsSet = vcntq_u8 (AxorB); uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet); uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8); bits = vaddq_u32(bits, bitSet4); } uint64x2_t bitSet2 = vpaddlq_u32 (bits); result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0); result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2); } else #endif for( ; i <= n - 4; i += 4 ) result += popCountTable[a[i] ^ b[i]] + popCountTable[a[i+1] ^ b[i+1]] + popCountTable[a[i+2] ^ b[i+2]] + popCountTable[a[i+3] ^ b[i+3]]; for( ; i < n; i++ ) result += popCountTable[a[i] ^ b[i]]; return result; } static int normHamming(const uchar* a, int n, int cellSize) { if( cellSize == 1 ) return normHamming(a, n); const uchar* tab = 0; if( cellSize == 2 ) tab = popCountTable2; else if( cellSize == 4 ) tab = popCountTable4; else CV_Error( CV_StsBadSize, "bad cell size (not 1, 2 or 4) in normHamming" ); int i = 0, result = 0; #if CV_ENABLE_UNROLLED for( ; i <= n - 4; i += 4 ) result += tab[a[i]] + tab[a[i+1]] + tab[a[i+2]] + tab[a[i+3]]; #endif for( ; i < n; i++ ) result += tab[a[i]]; return result; } int normHamming(const uchar* a, const uchar* b, int n, int cellSize) { if( cellSize == 1 ) return normHamming(a, b, n); const uchar* tab = 0; if( cellSize == 2 ) tab = popCountTable2; else if( cellSize == 4 ) tab = popCountTable4; else CV_Error( CV_StsBadSize, "bad cell size (not 1, 2 or 4) in normHamming" ); int i = 0, result = 0; #if CV_ENABLE_UNROLLED for( ; i <= n - 4; i += 4 ) result += tab[a[i] ^ b[i]] + tab[a[i+1] ^ b[i+1]] + tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]]; #endif for( ; i < n; i++ ) result += tab[a[i] ^ b[i]]; return result; } template int normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result = std::max(result, normInf(src, len*cn)); } else { for( int i = 0; i < len; i++, src += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) result = std::max(result, ST(fast_abs(src[k]))); } } *_result = result; return 0; } template int normL1_(const T* src, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result += normL1(src, len*cn); } else { for( int i = 0; i < len; i++, src += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) result += fast_abs(src[k]); } } *_result = result; return 0; } template int normL2_(const T* src, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result += normL2Sqr(src, len*cn); } else { for( int i = 0; i < len; i++, src += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) { T v = src[k]; result += (ST)v*v; } } } *_result = result; return 0; } template int normDiffInf_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result = std::max(result, normInf(src1, src2, len*cn)); } else { for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) result = std::max(result, (ST)std::abs(src1[k] - src2[k])); } } *_result = result; return 0; } template int normDiffL1_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result += normL1(src1, src2, len*cn); } else { for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) result += std::abs(src1[k] - src2[k]); } } *_result = result; return 0; } template int normDiffL2_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result += normL2Sqr(src1, src2, len*cn); } else { for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) { ST v = src1[k] - src2[k]; result += v*v; } } } *_result = result; return 0; } #define CV_DEF_NORM_FUNC(L, suffix, type, ntype) \ static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \ { return norm##L##_(src, mask, r, len, cn); } \ static int normDiff##L##_##suffix(const type* src1, const type* src2, \ const uchar* mask, ntype* r, int len, int cn) \ { return normDiff##L##_(src1, src2, mask, r, (int)len, cn); } #define CV_DEF_NORM_ALL(suffix, type, inftype, l1type, l2type) \ CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \ CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \ CV_DEF_NORM_FUNC(L2, suffix, type, l2type) CV_DEF_NORM_ALL(8u, uchar, int, int, int) CV_DEF_NORM_ALL(8s, schar, int, int, int) CV_DEF_NORM_ALL(16u, ushort, int, int, double) CV_DEF_NORM_ALL(16s, short, int, int, double) CV_DEF_NORM_ALL(32s, int, int, double, double) CV_DEF_NORM_ALL(32f, float, float, double, double) CV_DEF_NORM_ALL(64f, double, double, double, double) typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int); typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int); static NormFunc normTab[3][8] = { { (NormFunc)GET_OPTIMIZED(normInf_8u), (NormFunc)GET_OPTIMIZED(normInf_8s), (NormFunc)GET_OPTIMIZED(normInf_16u), (NormFunc)GET_OPTIMIZED(normInf_16s), (NormFunc)GET_OPTIMIZED(normInf_32s), (NormFunc)GET_OPTIMIZED(normInf_32f), (NormFunc)normInf_64f, 0 }, { (NormFunc)GET_OPTIMIZED(normL1_8u), (NormFunc)GET_OPTIMIZED(normL1_8s), (NormFunc)GET_OPTIMIZED(normL1_16u), (NormFunc)GET_OPTIMIZED(normL1_16s), (NormFunc)GET_OPTIMIZED(normL1_32s), (NormFunc)GET_OPTIMIZED(normL1_32f), (NormFunc)normL1_64f, 0 }, { (NormFunc)GET_OPTIMIZED(normL2_8u), (NormFunc)GET_OPTIMIZED(normL2_8s), (NormFunc)GET_OPTIMIZED(normL2_16u), (NormFunc)GET_OPTIMIZED(normL2_16s), (NormFunc)GET_OPTIMIZED(normL2_32s), (NormFunc)GET_OPTIMIZED(normL2_32f), (NormFunc)normL2_64f, 0 } }; static NormDiffFunc normDiffTab[3][8] = { { (NormDiffFunc)GET_OPTIMIZED(normDiffInf_8u), (NormDiffFunc)normDiffInf_8s, (NormDiffFunc)normDiffInf_16u, (NormDiffFunc)normDiffInf_16s, (NormDiffFunc)normDiffInf_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffInf_32f), (NormDiffFunc)normDiffInf_64f, 0 }, { (NormDiffFunc)GET_OPTIMIZED(normDiffL1_8u), (NormDiffFunc)normDiffL1_8s, (NormDiffFunc)normDiffL1_16u, (NormDiffFunc)normDiffL1_16s, (NormDiffFunc)normDiffL1_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL1_32f), (NormDiffFunc)normDiffL1_64f, 0 }, { (NormDiffFunc)GET_OPTIMIZED(normDiffL2_8u), (NormDiffFunc)normDiffL2_8s, (NormDiffFunc)normDiffL2_16u, (NormDiffFunc)normDiffL2_16s, (NormDiffFunc)normDiffL2_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL2_32f), (NormDiffFunc)normDiffL2_64f, 0 } }; } double cv::norm( InputArray _src, int normType, InputArray _mask ) { Mat src = _src.getMat(), mask = _mask.getMat(); int depth = src.depth(), cn = src.channels(); normType &= 7; CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR || ((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src.type() == CV_8U) ); if( src.isContinuous() && mask.empty() ) { size_t len = src.total()*cn; if( len == (size_t)(int)len ) { if( depth == CV_32F ) { const float* data = src.ptr(); if( normType == NORM_L2 ) { double result = 0; GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); return std::sqrt(result); } if( normType == NORM_L2SQR ) { double result = 0; GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); return result; } if( normType == NORM_L1 ) { double result = 0; GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1); return result; } if( normType == NORM_INF ) { float result = 0; GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1); return result; } } if( depth == CV_8U ) { const uchar* data = src.ptr(); if( normType == NORM_HAMMING ) return normHamming(data, (int)len); if( normType == NORM_HAMMING2 ) return normHamming(data, (int)len, 2); } } } CV_Assert( mask.empty() || mask.type() == CV_8U ); if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) { if( !mask.empty() ) { Mat temp; bitwise_and(src, mask, temp); return norm(temp, normType); } int cellSize = normType == NORM_HAMMING ? 1 : 2; const Mat* arrays[] = {&src, 0}; uchar* ptrs[1]; NAryMatIterator it(arrays, ptrs); int total = (int)it.size; int result = 0; for( size_t i = 0; i < it.nplanes; i++, ++it ) result += normHamming(ptrs[0], total, cellSize); return result; } NormFunc func = normTab[normType >> 1][depth]; CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &mask, 0}; uchar* ptrs[2]; union { double d; int i; float f; } result; result.d = 0; NAryMatIterator it(arrays, ptrs); int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0; bool blockSum = (normType == NORM_L1 && depth <= CV_16S) || ((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S); int isum = 0; int *ibuf = &result.i; size_t esz = 0; if( blockSum ) { intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn; blockSize = std::min(blockSize, intSumBlockSize); ibuf = &isum; esz = src.elemSize(); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( j = 0; j < total; j += blockSize ) { int bsz = std::min(total - j, blockSize); func( ptrs[0], ptrs[1], (uchar*)ibuf, bsz, cn ); count += bsz; if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) { result.d += isum; isum = 0; count = 0; } ptrs[0] += bsz*esz; if( ptrs[1] ) ptrs[1] += bsz; } } if( normType == NORM_INF ) { if( depth == CV_64F ) ; else if( depth == CV_32F ) result.d = result.f; else result.d = result.i; } else if( normType == NORM_L2 ) result.d = std::sqrt(result.d); return result.d; } double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask ) { if( normType & CV_RELATIVE ) return norm(_src1, _src2, normType & ~CV_RELATIVE, _mask)/(norm(_src2, normType, _mask) + DBL_EPSILON); Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); int depth = src1.depth(), cn = src1.channels(); CV_Assert( src1.size == src2.size && src1.type() == src2.type() ); normType &= 7; CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR || ((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src1.type() == CV_8U) ); if( src1.isContinuous() && src2.isContinuous() && mask.empty() ) { size_t len = src1.total()*src1.channels(); if( len == (size_t)(int)len ) { if( src1.depth() == CV_32F ) { const float* data1 = src1.ptr(); const float* data2 = src2.ptr(); if( normType == NORM_L2 ) { double result = 0; GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); return std::sqrt(result); } if( normType == NORM_L2SQR ) { double result = 0; GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); return result; } if( normType == NORM_L1 ) { double result = 0; GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1); return result; } if( normType == NORM_INF ) { float result = 0; GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1); return result; } } } } CV_Assert( mask.empty() || mask.type() == CV_8U ); if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) { if( !mask.empty() ) { Mat temp; bitwise_xor(src1, src2, temp); bitwise_and(temp, mask, temp); return norm(temp, normType); } int cellSize = normType == NORM_HAMMING ? 1 : 2; const Mat* arrays[] = {&src1, &src2, 0}; uchar* ptrs[2]; NAryMatIterator it(arrays, ptrs); int total = (int)it.size; int result = 0; for( size_t i = 0; i < it.nplanes; i++, ++it ) result += normHamming(ptrs[0], ptrs[1], total, cellSize); return result; } NormDiffFunc func = normDiffTab[normType >> 1][depth]; CV_Assert( func != 0 ); const Mat* arrays[] = {&src1, &src2, &mask, 0}; uchar* ptrs[3]; union { double d; float f; int i; unsigned u; } result; result.d = 0; NAryMatIterator it(arrays, ptrs); int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0; bool blockSum = (normType == NORM_L1 && depth <= CV_16S) || ((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S); unsigned isum = 0; unsigned *ibuf = &result.u; size_t esz = 0; if( blockSum ) { intSumBlockSize = normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15); blockSize = std::min(blockSize, intSumBlockSize); ibuf = &isum; esz = src1.elemSize(); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( j = 0; j < total; j += blockSize ) { int bsz = std::min(total - j, blockSize); func( ptrs[0], ptrs[1], ptrs[2], (uchar*)ibuf, bsz, cn ); count += bsz; if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) { result.d += isum; isum = 0; count = 0; } ptrs[0] += bsz*esz; ptrs[1] += bsz*esz; if( ptrs[2] ) ptrs[2] += bsz; } } if( normType == NORM_INF ) { if( depth == CV_64F ) ; else if( depth == CV_32F ) result.d = result.f; else result.d = result.u; } else if( normType == NORM_L2 ) result.d = std::sqrt(result.d); return result.d; } ///////////////////////////////////// batch distance /////////////////////////////////////// namespace cv { template void batchDistL1_(const _Tp* src1, const _Tp* src2, size_t step2, int nvecs, int len, _Rt* dist, const uchar* mask) { step2 /= sizeof(src2[0]); if( !mask ) { for( int i = 0; i < nvecs; i++ ) dist[i] = normL1<_Tp, _Rt>(src1, src2 + step2*i, len); } else { _Rt val0 = std::numeric_limits<_Rt>::max(); for( int i = 0; i < nvecs; i++ ) dist[i] = mask[i] ? normL1<_Tp, _Rt>(src1, src2 + step2*i, len) : val0; } } template void batchDistL2Sqr_(const _Tp* src1, const _Tp* src2, size_t step2, int nvecs, int len, _Rt* dist, const uchar* mask) { step2 /= sizeof(src2[0]); if( !mask ) { for( int i = 0; i < nvecs; i++ ) dist[i] = normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len); } else { _Rt val0 = std::numeric_limits<_Rt>::max(); for( int i = 0; i < nvecs; i++ ) dist[i] = mask[i] ? normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len) : val0; } } template void batchDistL2_(const _Tp* src1, const _Tp* src2, size_t step2, int nvecs, int len, _Rt* dist, const uchar* mask) { step2 /= sizeof(src2[0]); if( !mask ) { for( int i = 0; i < nvecs; i++ ) dist[i] = std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)); } else { _Rt val0 = std::numeric_limits<_Rt>::max(); for( int i = 0; i < nvecs; i++ ) dist[i] = mask[i] ? std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)) : val0; } } static void batchDistHamming(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, int* dist, const uchar* mask) { step2 /= sizeof(src2[0]); if( !mask ) { for( int i = 0; i < nvecs; i++ ) dist[i] = normHamming(src1, src2 + step2*i, len); } else { int val0 = INT_MAX; for( int i = 0; i < nvecs; i++ ) dist[i] = mask[i] ? normHamming(src1, src2 + step2*i, len) : val0; } } static void batchDistHamming2(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, int* dist, const uchar* mask) { step2 /= sizeof(src2[0]); if( !mask ) { for( int i = 0; i < nvecs; i++ ) dist[i] = normHamming(src1, src2 + step2*i, len, 2); } else { int val0 = INT_MAX; for( int i = 0; i < nvecs; i++ ) dist[i] = mask[i] ? normHamming(src1, src2 + step2*i, len, 2) : val0; } } static void batchDistL1_8u32s(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, int* dist, const uchar* mask) { batchDistL1_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL1_8u32f(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL1_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL2Sqr_8u32s(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, int* dist, const uchar* mask) { batchDistL2Sqr_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL2Sqr_8u32f(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL2Sqr_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL2_8u32f(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL2_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL1_32f(const float* src1, const float* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL1_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL2Sqr_32f(const float* src1, const float* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL2Sqr_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL2_32f(const float* src1, const float* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL2_(src1, src2, step2, nvecs, len, dist, mask); } typedef void (*BatchDistFunc)(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, uchar* dist, const uchar* mask); struct BatchDistInvoker { BatchDistInvoker( const Mat& _src1, const Mat& _src2, Mat& _dist, Mat& _nidx, int _K, const Mat& _mask, int _update, BatchDistFunc _func) { src1 = &_src1; src2 = &_src2; dist = &_dist; nidx = &_nidx; K = _K; mask = &_mask; update = _update; func = _func; } void operator()(const BlockedRange& range) const { AutoBuffer buf(src2->rows); int* bufptr = buf; for( int i = range.begin(); i < range.end(); i++ ) { func(src1->ptr(i), src2->ptr(), src2->step, src2->rows, src2->cols, K > 0 ? (uchar*)bufptr : dist->ptr(i), mask->data ? mask->ptr(i) : 0); if( K > 0 ) { int* nidxptr = nidx->ptr(i); // since positive float's can be compared just like int's, // we handle both CV_32S and CV_32F cases with a single branch int* distptr = (int*)dist->ptr(i); int j, k; for( j = 0; j < src2->rows; j++ ) { int d = bufptr[j]; if( d < distptr[K-1] ) { for( k = K-2; k >= 0 && distptr[k] > d; k-- ) { nidxptr[k+1] = nidxptr[k]; distptr[k+1] = distptr[k]; } nidxptr[k+1] = j + update; distptr[k+1] = d; } } } } } const Mat *src1; const Mat *src2; Mat *dist; Mat *nidx; const Mat *mask; int K; int update; BatchDistFunc func; }; } void cv::batchDistance( InputArray _src1, InputArray _src2, OutputArray _dist, int dtype, OutputArray _nidx, int normType, int K, InputArray _mask, int update, bool crosscheck ) { Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); int type = src1.type(); CV_Assert( type == src2.type() && src1.cols == src2.cols && (type == CV_32F || type == CV_8U)); CV_Assert( _nidx.needed() == (K > 0) ); if( dtype == -1 ) { dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 ? CV_32S : CV_32F; } CV_Assert( (type == CV_8U && dtype == CV_32S) || dtype == CV_32F); K = std::min(K, src2.rows); _dist.create(src1.rows, (K > 0 ? K : src2.rows), dtype); Mat dist = _dist.getMat(), nidx; if( _nidx.needed() ) { _nidx.create(dist.size(), CV_32S); nidx = _nidx.getMat(); } if( update == 0 && K > 0 ) { dist = Scalar::all(dtype == CV_32S ? (double)INT_MAX : (double)FLT_MAX); nidx = Scalar::all(-1); } if( crosscheck ) { CV_Assert( K == 1 && update == 0 && mask.empty() ); Mat tdist, tidx; batchDistance(src2, src1, tdist, dtype, tidx, normType, K, mask, 0, false); // if an idx-th element from src1 appeared to be the nearest to i-th element of src2, // we update the minimum mutual distance between idx-th element of src1 and the whole src2 set. // As a result, if nidx[idx] = i*, it means that idx-th element of src1 is the nearest // to i*-th element of src2 and i*-th element of src2 is the closest to idx-th element of src1. // If nidx[idx] = -1, it means that there is no such ideal couple for it in src2. // This O(N) procedure is called cross-check and it helps to eliminate some false matches. if( dtype == CV_32S ) { for( int i = 0; i < tdist.rows; i++ ) { int idx = tidx.at(i); int d = tdist.at(i), d0 = dist.at(idx); if( d < d0 ) { dist.at(idx) = d; nidx.at(idx) = i + update; } } } else { for( int i = 0; i < tdist.rows; i++ ) { int idx = tidx.at(i); float d = tdist.at(i), d0 = dist.at(idx); if( d < d0 ) { dist.at(idx) = d; nidx.at(idx) = i + update; } } } return; } BatchDistFunc func = 0; if( type == CV_8U ) { if( normType == NORM_L1 && dtype == CV_32S ) func = (BatchDistFunc)batchDistL1_8u32s; else if( normType == NORM_L1 && dtype == CV_32F ) func = (BatchDistFunc)batchDistL1_8u32f; else if( normType == NORM_L2SQR && dtype == CV_32S ) func = (BatchDistFunc)batchDistL2Sqr_8u32s; else if( normType == NORM_L2SQR && dtype == CV_32F ) func = (BatchDistFunc)batchDistL2Sqr_8u32f; else if( normType == NORM_L2 && dtype == CV_32F ) func = (BatchDistFunc)batchDistL2_8u32f; else if( normType == NORM_HAMMING && dtype == CV_32S ) func = (BatchDistFunc)batchDistHamming; else if( normType == NORM_HAMMING2 && dtype == CV_32S ) func = (BatchDistFunc)batchDistHamming2; } else if( type == CV_32F && dtype == CV_32F ) { if( normType == NORM_L1 ) func = (BatchDistFunc)batchDistL1_32f; else if( normType == NORM_L2SQR ) func = (BatchDistFunc)batchDistL2Sqr_32f; else if( normType == NORM_L2 ) func = (BatchDistFunc)batchDistL2_32f; } if( func == 0 ) CV_Error_(CV_StsUnsupportedFormat, ("The combination of type=%d, dtype=%d and normType=%d is not supported", type, dtype, normType)); parallel_for(BlockedRange(0, src1.rows), BatchDistInvoker(src1, src2, dist, nidx, K, mask, update, func)); } void cv::findNonZero( InputArray _src, OutputArray _idx ) { Mat src = _src.getMat(); CV_Assert( src.type() == CV_8UC1 ); int n = countNonZero(src); if( _idx.kind() == _InputArray::MAT && !_idx.getMatRef().isContinuous() ) _idx.release(); _idx.create(n, 1, CV_32SC2); Mat idx = _idx.getMat(); CV_Assert(idx.isContinuous()); Point* idx_ptr = (Point*)idx.data; for( int i = 0; i < src.rows; i++ ) { const uchar* bin_ptr = src.ptr(i); for( int j = 0; j < src.cols; j++ ) if( bin_ptr[j] ) *idx_ptr++ = Point(j, i); } } CV_IMPL CvScalar cvSum( const CvArr* srcarr ) { cv::Scalar sum = cv::sum(cv::cvarrToMat(srcarr, false, true, 1)); if( CV_IS_IMAGE(srcarr) ) { int coi = cvGetImageCOI((IplImage*)srcarr); if( coi ) { CV_Assert( 0 < coi && coi <= 4 ); sum = cv::Scalar(sum[coi-1]); } } return sum; } CV_IMPL int cvCountNonZero( const CvArr* imgarr ) { cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1); if( img.channels() > 1 ) cv::extractImageCOI(imgarr, img); return countNonZero(img); } CV_IMPL CvScalar cvAvg( const void* imgarr, const void* maskarr ) { cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1); cv::Scalar mean = !maskarr ? cv::mean(img) : cv::mean(img, cv::cvarrToMat(maskarr)); if( CV_IS_IMAGE(imgarr) ) { int coi = cvGetImageCOI((IplImage*)imgarr); if( coi ) { CV_Assert( 0 < coi && coi <= 4 ); mean = cv::Scalar(mean[coi-1]); } } return mean; } CV_IMPL void cvAvgSdv( const CvArr* imgarr, CvScalar* _mean, CvScalar* _sdv, const void* maskarr ) { cv::Scalar mean, sdv; cv::Mat mask; if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::meanStdDev(cv::cvarrToMat(imgarr, false, true, 1), mean, sdv, mask ); if( CV_IS_IMAGE(imgarr) ) { int coi = cvGetImageCOI((IplImage*)imgarr); if( coi ) { CV_Assert( 0 < coi && coi <= 4 ); mean = cv::Scalar(mean[coi-1]); sdv = cv::Scalar(sdv[coi-1]); } } if( _mean ) *(cv::Scalar*)_mean = mean; if( _sdv ) *(cv::Scalar*)_sdv = sdv; } CV_IMPL void cvMinMaxLoc( const void* imgarr, double* _minVal, double* _maxVal, CvPoint* _minLoc, CvPoint* _maxLoc, const void* maskarr ) { cv::Mat mask, img = cv::cvarrToMat(imgarr, false, true, 1); if( maskarr ) mask = cv::cvarrToMat(maskarr); if( img.channels() > 1 ) cv::extractImageCOI(imgarr, img); cv::minMaxLoc( img, _minVal, _maxVal, (cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask ); } CV_IMPL double cvNorm( const void* imgA, const void* imgB, int normType, const void* maskarr ) { cv::Mat a, mask; if( !imgA ) { imgA = imgB; imgB = 0; } a = cv::cvarrToMat(imgA, false, true, 1); if( maskarr ) mask = cv::cvarrToMat(maskarr); if( a.channels() > 1 && CV_IS_IMAGE(imgA) && cvGetImageCOI((const IplImage*)imgA) > 0 ) cv::extractImageCOI(imgA, a); if( !imgB ) return !maskarr ? cv::norm(a, normType) : cv::norm(a, normType, mask); cv::Mat b = cv::cvarrToMat(imgB, false, true, 1); if( b.channels() > 1 && CV_IS_IMAGE(imgB) && cvGetImageCOI((const IplImage*)imgB) > 0 ) cv::extractImageCOI(imgB, b); return !maskarr ? cv::norm(a, b, normType) : cv::norm(a, b, normType, mask); }