// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "precomp.hpp" #include "op_inf_engine.hpp" #include namespace cv { namespace dnn { #ifdef HAVE_INF_ENGINE InfEngineBackendNode::InfEngineBackendNode(const InferenceEngine::CNNLayerPtr& _layer) : BackendNode(DNN_BACKEND_INFERENCE_ENGINE), layer(_layer) {} void InfEngineBackendNode::connect(std::vector >& inputs, std::vector >& outputs) { layer->insData.resize(inputs.size()); for (int i = 0; i < inputs.size(); ++i) { InferenceEngine::DataPtr dataPtr = infEngineDataNode(inputs[i]); layer->insData[i] = InferenceEngine::DataWeakPtr(dataPtr); dataPtr->inputTo[layer->name] = layer; } CV_Assert(!outputs.empty()); layer->outData.resize(1); InferenceEngine::DataPtr dataPtr = infEngineDataNode(outputs[0]); dataPtr->name = layer->name; layer->outData[0] = dataPtr; dataPtr->creatorLayer = InferenceEngine::CNNLayerWeakPtr(layer); } static std::vector > infEngineWrappers(const std::vector >& ptrs) { std::vector > wrappers(ptrs.size()); for (int i = 0; i < ptrs.size(); ++i) { CV_Assert(!ptrs[i].empty()); wrappers[i] = ptrs[i].dynamicCast(); CV_Assert(!wrappers[i].empty()); } return wrappers; } static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "") { std::vector reversedShape(&m.size[0], &m.size[0] + m.dims); std::reverse(reversedShape.begin(), reversedShape.end()); return InferenceEngine::DataPtr( new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32, InferenceEngine::Layout::ANY) ); } InferenceEngine::TBlob::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector& shape) { return InferenceEngine::make_shared_blob(InferenceEngine::Precision::FP32, shape, (float*)m.data); } InferenceEngine::TBlob::Ptr wrapToInfEngineBlob(const Mat& m) { std::vector reversedShape(&m.size[0], &m.size[0] + m.dims); std::reverse(reversedShape.begin(), reversedShape.end()); return wrapToInfEngineBlob(m, reversedShape); } InferenceEngine::DataPtr infEngineDataNode(const Ptr& ptr) { CV_Assert(!ptr.empty()); Ptr p = ptr.dynamicCast(); CV_Assert(!p.empty()); return p->dataPtr; } InfEngineBackendWrapper::InfEngineBackendWrapper(int targetId, const cv::Mat& m) : BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, targetId) { dataPtr = wrapToInfEngineDataNode(m); blob = wrapToInfEngineBlob(m); } InfEngineBackendWrapper::~InfEngineBackendWrapper() { } void InfEngineBackendWrapper::copyToHost() { } void InfEngineBackendWrapper::setHostDirty() { } InfEngineBackendNet::InfEngineBackendNet() { } InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net) { inputs = net.getInputsInfo(); outputs = net.getOutputsInfo(); layers.resize(net.layerCount()); // A hack to execute InfEngineBackendNet::layerCount correctly. initPlugin(net); } void InfEngineBackendNet::Release() noexcept { layers.clear(); inputs.clear(); outputs.clear(); } InferenceEngine::Precision InfEngineBackendNet::getPrecision() noexcept { return InferenceEngine::Precision::FP32; } // Assume that outputs of network is unconnected blobs. void InfEngineBackendNet::getOutputsInfo(InferenceEngine::OutputsDataMap &outputs_) noexcept { outputs_ = outputs; } void InfEngineBackendNet::getOutputsInfo(InferenceEngine::OutputsDataMap &outputs_) const noexcept { outputs_ = outputs; } // Returns input references that aren't connected to internal outputs. void InfEngineBackendNet::getInputsInfo(InferenceEngine::InputsDataMap &inputs_) noexcept { inputs_ = inputs; } // Returns input references that aren't connected to internal outputs. void InfEngineBackendNet::getInputsInfo(InferenceEngine::InputsDataMap &inputs_) const noexcept { inputs_ = inputs; } InferenceEngine::InputInfo::Ptr InfEngineBackendNet::getInput(const std::string &inputName) noexcept { getInputsInfo(inputs); const auto& it = inputs.find(inputName); CV_Assert(it != inputs.end()); return it->second; } void InfEngineBackendNet::getName(char *pName, size_t len) noexcept { CV_Error(Error::StsNotImplemented, ""); } size_t InfEngineBackendNet::layerCount() noexcept { return layers.size(); } InferenceEngine::DataPtr& InfEngineBackendNet::getData(const char *dname) noexcept { CV_Error(Error::StsNotImplemented, ""); return outputs.begin()->second; // Just return something. } void InfEngineBackendNet::addLayer(const InferenceEngine::CNNLayerPtr &layer) noexcept { layers.push_back(layer); inputs.clear(); outputs.clear(); } InferenceEngine::StatusCode InfEngineBackendNet::addOutput(const std::string &layerName, size_t outputIndex, InferenceEngine::ResponseDesc *resp) noexcept { for (const auto& l : layers) { for (const InferenceEngine::DataPtr& out : l->outData) { if (out->name == layerName) { outputs[out->name] = out; return InferenceEngine::StatusCode::OK; } } } CV_Error(Error::StsObjectNotFound, "Cannot find a layer " + layerName); return InferenceEngine::StatusCode::OK; } InferenceEngine::StatusCode InfEngineBackendNet::getLayerByName(const char *layerName, InferenceEngine::CNNLayerPtr &out, InferenceEngine::ResponseDesc *resp) noexcept { CV_Error(Error::StsNotImplemented, ""); return InferenceEngine::StatusCode::OK; } void InfEngineBackendNet::setTargetDevice(InferenceEngine::TargetDevice device) noexcept { if (device != InferenceEngine::TargetDevice::eCPU) CV_Error(Error::StsNotImplemented, ""); } InferenceEngine::TargetDevice InfEngineBackendNet::getTargetDevice() noexcept { return InferenceEngine::TargetDevice::eCPU; } InferenceEngine::StatusCode InfEngineBackendNet::setBatchSize(const size_t size) noexcept { CV_Error(Error::StsNotImplemented, ""); return InferenceEngine::StatusCode::OK; } size_t InfEngineBackendNet::getBatchSize() const noexcept { CV_Error(Error::StsNotImplemented, ""); return 0; } void InfEngineBackendNet::init() { if (inputs.empty()) { // Collect all external input blobs. inputs.clear(); std::map internalOutputs; for (const auto& l : layers) { for (const InferenceEngine::DataWeakPtr& ptr : l->insData) { InferenceEngine::DataPtr inp(ptr); if (internalOutputs.find(inp->name) == internalOutputs.end()) { InferenceEngine::InputInfo::Ptr inpInfo(new InferenceEngine::InputInfo()); inpInfo->setInputData(inp); if (inputs.find(inp->name) == inputs.end()) inputs[inp->name] = inpInfo; } } for (const InferenceEngine::DataPtr& out : l->outData) { // TODO: Replace to uniquness assertion. if (internalOutputs.find(out->name) == internalOutputs.end()) internalOutputs[out->name] = out; } } CV_Assert(!inputs.empty()); } if (outputs.empty()) { // Add all unconnected blobs to output blobs. InferenceEngine::OutputsDataMap unconnectedOuts; for (const auto& l : layers) { // Add all outputs. for (const InferenceEngine::DataPtr& out : l->outData) { // TODO: Replace to uniquness assertion. if (unconnectedOuts.find(out->name) == unconnectedOuts.end()) unconnectedOuts[out->name] = out; } // Remove internally connected outputs. for (const InferenceEngine::DataWeakPtr& inp : l->insData) { unconnectedOuts.erase(InferenceEngine::DataPtr(inp)->name); } } CV_Assert(!unconnectedOuts.empty()); for (auto it = unconnectedOuts.begin(); it != unconnectedOuts.end(); ++it) { outputs[it->first] = it->second; } } // Set up input blobs. inpBlobs.clear(); for (const auto& it : inputs) { CV_Assert(allBlobs.find(it.first) != allBlobs.end()); inpBlobs[it.first] = allBlobs[it.first]; } // Set up output blobs. outBlobs.clear(); for (const auto& it : outputs) { CV_Assert(allBlobs.find(it.first) != allBlobs.end()); outBlobs[it.first] = allBlobs[it.first]; } if (!isInitialized()) initPlugin(*this); } void InfEngineBackendNet::initPlugin(InferenceEngine::ICNNNetwork& net) { CV_Assert(!isInitialized()); #ifdef _WIN32 plugin = InferenceEngine::InferenceEnginePluginPtr("MKLDNNPlugin.dll"); #else plugin = InferenceEngine::InferenceEnginePluginPtr("libMKLDNNPlugin.so"); #endif // _WIN32 InferenceEngine::ResponseDesc resp; InferenceEngine::StatusCode status = plugin->LoadNetwork(net, &resp); if (status != InferenceEngine::StatusCode::OK) CV_Error(Error::StsAssert, resp.msg); } bool InfEngineBackendNet::isInitialized() { return (bool)plugin; } void InfEngineBackendNet::addBlobs(const std::vector >& ptrs) { auto wrappers = infEngineWrappers(ptrs); for (const auto& wrapper : wrappers) { allBlobs[wrapper->dataPtr->name] = wrapper->blob; } } void InfEngineBackendNet::forward() { InferenceEngine::ResponseDesc resp; InferenceEngine::StatusCode status = plugin->Infer(inpBlobs, outBlobs, &resp); if (status != InferenceEngine::StatusCode::OK) CV_Error(Error::StsAssert, resp.msg); } static inline Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob) { // NOTE: Inference Engine sizes are reversed. std::vector dims = blob->dims(); std::vector size(dims.begin(), dims.end()); std::reverse(size.begin(), size.end()); return Mat(size, CV_32F, (void*)blob->buffer()); } void fuseConvWeights(const std::shared_ptr& conv, const Mat& w, const Mat& b) { CV_Assert(!w.empty() || !b.empty()); if (!w.empty()) { // Get convolution's weights. Clone the data because Inference Engine can host it // and conv->_weights->allocate() below will deallocate it. Mat originWeights = infEngineBlobToMat(conv->_weights).clone(); // Create new weights blob. conv->_weights = InferenceEngine::make_shared_blob( InferenceEngine::Precision::FP32, conv->_weights->dims()); conv->_weights->allocate(); // Convolution weights have OIHW data layout. // (conv(I) + b1 ) * w + b2 // w*conv(I) + b1 * w + b2 Mat fusedWeights = infEngineBlobToMat(conv->_weights); const int numChannels = fusedWeights.size[0]; // Mat weights = blobs[0].reshape(1, 1); // Mat bias = hasBias ? blobs[1].reshape(1, 1) : Mat(); CV_Assert(numChannels == w.total()); CV_Assert(b.empty() || numChannels == b.total()); for (int i = 0; i < numChannels; ++i) { cv::multiply(slice(originWeights, i), w.at(i), slice(fusedWeights, i)); } } if (conv->_biases) { // The same for biases. Mat originBiases = infEngineBlobToMat(conv->_biases).clone(); conv->_biases = InferenceEngine::make_shared_blob( InferenceEngine::Precision::FP32, conv->_biases->dims()); conv->_biases->allocate(); Mat fusedBiases = infEngineBlobToMat(conv->_biases); originBiases.copyTo(fusedBiases); if (!w.empty()) cv::multiply(w.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), fusedBiases, fusedBiases); if (!b.empty()) cv::add(fusedBiases, b.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), fusedBiases); } else conv->_biases = wrapToInfEngineBlob(b); } InfEngineBackendLayer::InfEngineBackendLayer(const InferenceEngine::DataPtr& output_) { output = output_; } bool InfEngineBackendLayer::getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const { std::vector dims = output->dims; std::vector shape(dims.begin(), dims.end()); std::reverse(shape.begin(), shape.end()); outputs.assign(1, shape); return false; } bool InfEngineBackendLayer::supportBackend(int backendId) { return backendId == DNN_BACKEND_DEFAULT || backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine(); } void InfEngineBackendLayer::forward(std::vector &input, std::vector &output, std::vector &internals) { CV_Error(Error::StsError, "Choose Inference Engine as a preferable backend."); } void InfEngineBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) { CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend."); } #endif // HAVE_INF_ENGINE bool haveInfEngine() { #ifdef HAVE_INF_ENGINE return true; #else return false; #endif // HAVE_INF_ENGINE } void forwardInfEngine(Ptr& node) { CV_Assert(haveInfEngine()); #ifdef HAVE_INF_ENGINE CV_Assert(!node.empty()); Ptr ieNode = node.dynamicCast(); CV_Assert(!ieNode.empty()); ieNode->net->forward(); #endif // HAVE_INF_ENGINE } }} // namespace dnn, namespace cv