/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { #if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900/*MSVS 2015*/) // Stitcher::ORIG_RESOL is initialized in stitching.hpp. #else const double Stitcher::ORIG_RESOL = -1.0; #endif Ptr Stitcher::create(Mode mode) { Ptr stitcher = makePtr(); stitcher->setRegistrationResol(0.6); stitcher->setSeamEstimationResol(0.1); stitcher->setCompositingResol(ORIG_RESOL); stitcher->setPanoConfidenceThresh(1); stitcher->setSeamFinder(makePtr(detail::GraphCutSeamFinderBase::COST_COLOR)); stitcher->setBlender(makePtr(false)); stitcher->setFeaturesFinder(ORB::create()); stitcher->setInterpolationFlags(INTER_LINEAR); stitcher->work_scale_ = 1; stitcher->seam_scale_ = 1; stitcher->seam_work_aspect_ = 1; stitcher->warped_image_scale_ = 1; switch (mode) { case PANORAMA: // PANORAMA is the default // mostly already setup stitcher->setEstimator(makePtr()); stitcher->setWaveCorrection(true); stitcher->setWaveCorrectKind(detail::WAVE_CORRECT_HORIZ); stitcher->setFeaturesMatcher(makePtr(false)); stitcher->setBundleAdjuster(makePtr()); stitcher->setWarper(makePtr()); stitcher->setExposureCompensator(makePtr()); break; case SCANS: stitcher->setEstimator(makePtr()); stitcher->setWaveCorrection(false); stitcher->setFeaturesMatcher(makePtr(false, false)); stitcher->setBundleAdjuster(makePtr()); stitcher->setWarper(makePtr()); stitcher->setExposureCompensator(makePtr()); break; default: CV_Error(Error::StsBadArg, "Invalid stitching mode. Must be one of Stitcher::Mode"); break; } return stitcher; } Stitcher::Status Stitcher::estimateTransform(InputArrayOfArrays images, InputArrayOfArrays masks) { CV_INSTRUMENT_REGION(); images.getUMatVector(imgs_); masks.getUMatVector(masks_); Status status; if ((status = matchImages()) != OK) return status; if ((status = estimateCameraParams()) != OK) return status; return OK; } Stitcher::Status Stitcher::composePanorama(OutputArray pano) { CV_INSTRUMENT_REGION(); return composePanorama(std::vector(), pano); } Stitcher::Status Stitcher::composePanorama(InputArrayOfArrays images, OutputArray pano) { CV_INSTRUMENT_REGION(); LOGLN("Warping images (auxiliary)... "); std::vector imgs; images.getUMatVector(imgs); if (!imgs.empty()) { CV_Assert(imgs.size() == imgs_.size()); UMat img; seam_est_imgs_.resize(imgs.size()); for (size_t i = 0; i < imgs.size(); ++i) { imgs_[i] = imgs[i]; resize(imgs[i], img, Size(), seam_scale_, seam_scale_, INTER_LINEAR_EXACT); seam_est_imgs_[i] = img.clone(); } std::vector seam_est_imgs_subset; std::vector imgs_subset; for (size_t i = 0; i < indices_.size(); ++i) { imgs_subset.push_back(imgs_[indices_[i]]); seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]); } seam_est_imgs_ = seam_est_imgs_subset; imgs_ = imgs_subset; } UMat pano_; #if ENABLE_LOG int64 t = getTickCount(); #endif std::vector corners(imgs_.size()); std::vector masks_warped(imgs_.size()); std::vector images_warped(imgs_.size()); std::vector sizes(imgs_.size()); std::vector masks(imgs_.size()); // Prepare image masks for (size_t i = 0; i < imgs_.size(); ++i) { masks[i].create(seam_est_imgs_[i].size(), CV_8U); masks[i].setTo(Scalar::all(255)); } // Warp images and their masks Ptr w = warper_->create(float(warped_image_scale_ * seam_work_aspect_)); for (size_t i = 0; i < imgs_.size(); ++i) { Mat_ K; cameras_[i].K().convertTo(K, CV_32F); K(0,0) *= (float)seam_work_aspect_; K(0,2) *= (float)seam_work_aspect_; K(1,1) *= (float)seam_work_aspect_; K(1,2) *= (float)seam_work_aspect_; corners[i] = w->warp(seam_est_imgs_[i], K, cameras_[i].R, interp_flags_, BORDER_REFLECT, images_warped[i]); sizes[i] = images_warped[i].size(); w->warp(masks[i], K, cameras_[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]); } LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); // Compensate exposure before finding seams exposure_comp_->feed(corners, images_warped, masks_warped); for (size_t i = 0; i < imgs_.size(); ++i) exposure_comp_->apply(int(i), corners[i], images_warped[i], masks_warped[i]); // Find seams std::vector images_warped_f(imgs_.size()); for (size_t i = 0; i < imgs_.size(); ++i) images_warped[i].convertTo(images_warped_f[i], CV_32F); seam_finder_->find(images_warped_f, corners, masks_warped); // Release unused memory seam_est_imgs_.clear(); images_warped.clear(); images_warped_f.clear(); masks.clear(); LOGLN("Compositing..."); #if ENABLE_LOG t = getTickCount(); #endif UMat img_warped, img_warped_s; UMat dilated_mask, seam_mask, mask, mask_warped; //double compose_seam_aspect = 1; double compose_work_aspect = 1; bool is_blender_prepared = false; double compose_scale = 1; bool is_compose_scale_set = false; std::vector cameras_scaled(cameras_); UMat full_img, img; for (size_t img_idx = 0; img_idx < imgs_.size(); ++img_idx) { LOGLN("Compositing image #" << indices_[img_idx] + 1); #if ENABLE_LOG int64 compositing_t = getTickCount(); #endif // Read image and resize it if necessary full_img = imgs_[img_idx]; if (!is_compose_scale_set) { if (compose_resol_ > 0) compose_scale = std::min(1.0, std::sqrt(compose_resol_ * 1e6 / full_img.size().area())); is_compose_scale_set = true; // Compute relative scales //compose_seam_aspect = compose_scale / seam_scale_; compose_work_aspect = compose_scale / work_scale_; // Update warped image scale float warp_scale = static_cast(warped_image_scale_ * compose_work_aspect); w = warper_->create(warp_scale); // Update corners and sizes for (size_t i = 0; i < imgs_.size(); ++i) { // Update intrinsics cameras_scaled[i].ppx *= compose_work_aspect; cameras_scaled[i].ppy *= compose_work_aspect; cameras_scaled[i].focal *= compose_work_aspect; // Update corner and size Size sz = full_img_sizes_[i]; if (std::abs(compose_scale - 1) > 1e-1) { sz.width = cvRound(full_img_sizes_[i].width * compose_scale); sz.height = cvRound(full_img_sizes_[i].height * compose_scale); } Mat K; cameras_scaled[i].K().convertTo(K, CV_32F); Rect roi = w->warpRoi(sz, K, cameras_scaled[i].R); corners[i] = roi.tl(); sizes[i] = roi.size(); } } if (std::abs(compose_scale - 1) > 1e-1) { #if ENABLE_LOG int64 resize_t = getTickCount(); #endif resize(full_img, img, Size(), compose_scale, compose_scale, INTER_LINEAR_EXACT); LOGLN(" resize time: " << ((getTickCount() - resize_t) / getTickFrequency()) << " sec"); } else img = full_img; full_img.release(); Size img_size = img.size(); LOGLN(" after resize time: " << ((getTickCount() - compositing_t) / getTickFrequency()) << " sec"); Mat K; cameras_scaled[img_idx].K().convertTo(K, CV_32F); #if ENABLE_LOG int64 pt = getTickCount(); #endif // Warp the current image w->warp(img, K, cameras_[img_idx].R, interp_flags_, BORDER_REFLECT, img_warped); LOGLN(" warp the current image: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); #if ENABLE_LOG pt = getTickCount(); #endif // Warp the current image mask mask.create(img_size, CV_8U); mask.setTo(Scalar::all(255)); w->warp(mask, K, cameras_[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped); LOGLN(" warp the current image mask: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); #if ENABLE_LOG pt = getTickCount(); #endif // Compensate exposure exposure_comp_->apply((int)img_idx, corners[img_idx], img_warped, mask_warped); LOGLN(" compensate exposure: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); #if ENABLE_LOG pt = getTickCount(); #endif img_warped.convertTo(img_warped_s, CV_16S); img_warped.release(); img.release(); mask.release(); // Make sure seam mask has proper size dilate(masks_warped[img_idx], dilated_mask, Mat()); resize(dilated_mask, seam_mask, mask_warped.size(), 0, 0, INTER_LINEAR_EXACT); bitwise_and(seam_mask, mask_warped, mask_warped); LOGLN(" other: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); #if ENABLE_LOG pt = getTickCount(); #endif if (!is_blender_prepared) { blender_->prepare(corners, sizes); is_blender_prepared = true; } LOGLN(" other2: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); LOGLN(" feed..."); #if ENABLE_LOG int64 feed_t = getTickCount(); #endif // Blend the current image blender_->feed(img_warped_s, mask_warped, corners[img_idx]); LOGLN(" feed time: " << ((getTickCount() - feed_t) / getTickFrequency()) << " sec"); LOGLN("Compositing ## time: " << ((getTickCount() - compositing_t) / getTickFrequency()) << " sec"); } #if ENABLE_LOG int64 blend_t = getTickCount(); #endif UMat result; blender_->blend(result, result_mask_); LOGLN("blend time: " << ((getTickCount() - blend_t) / getTickFrequency()) << " sec"); LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); // Preliminary result is in CV_16SC3 format, but all values are in [0,255] range, // so convert it to avoid user confusing result.convertTo(pano, CV_8U); return OK; } Stitcher::Status Stitcher::stitch(InputArrayOfArrays images, OutputArray pano) { return stitch(images, noArray(), pano); } Stitcher::Status Stitcher::stitch(InputArrayOfArrays images, InputArrayOfArrays masks, OutputArray pano) { CV_INSTRUMENT_REGION(); Status status = estimateTransform(images, masks); if (status != OK) return status; return composePanorama(pano); } Stitcher::Status Stitcher::matchImages() { if ((int)imgs_.size() < 2) { LOGLN("Need more images"); return ERR_NEED_MORE_IMGS; } work_scale_ = 1; seam_work_aspect_ = 1; seam_scale_ = 1; bool is_work_scale_set = false; bool is_seam_scale_set = false; features_.resize(imgs_.size()); seam_est_imgs_.resize(imgs_.size()); full_img_sizes_.resize(imgs_.size()); LOGLN("Finding features..."); #if ENABLE_LOG int64 t = getTickCount(); #endif std::vector feature_find_imgs(imgs_.size()); std::vector feature_find_masks(masks_.size()); for (size_t i = 0; i < imgs_.size(); ++i) { full_img_sizes_[i] = imgs_[i].size(); if (registr_resol_ < 0) { feature_find_imgs[i] = imgs_[i]; work_scale_ = 1; is_work_scale_set = true; } else { if (!is_work_scale_set) { work_scale_ = std::min(1.0, std::sqrt(registr_resol_ * 1e6 / full_img_sizes_[i].area())); is_work_scale_set = true; } resize(imgs_[i], feature_find_imgs[i], Size(), work_scale_, work_scale_, INTER_LINEAR_EXACT); } if (!is_seam_scale_set) { seam_scale_ = std::min(1.0, std::sqrt(seam_est_resol_ * 1e6 / full_img_sizes_[i].area())); seam_work_aspect_ = seam_scale_ / work_scale_; is_seam_scale_set = true; } if (!masks_.empty()) { resize(masks_[i], feature_find_masks[i], Size(), work_scale_, work_scale_, INTER_NEAREST); } features_[i].img_idx = (int)i; LOGLN("Features in image #" << i+1 << ": " << features_[i].keypoints.size()); resize(imgs_[i], seam_est_imgs_[i], Size(), seam_scale_, seam_scale_, INTER_LINEAR_EXACT); } // find features possibly in parallel detail::computeImageFeatures(features_finder_, feature_find_imgs, features_, feature_find_masks); // Do it to save memory feature_find_imgs.clear(); feature_find_masks.clear(); LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); LOG("Pairwise matching"); #if ENABLE_LOG t = getTickCount(); #endif (*features_matcher_)(features_, pairwise_matches_, matching_mask_); features_matcher_->collectGarbage(); LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); // Leave only images we are sure are from the same panorama indices_ = detail::leaveBiggestComponent(features_, pairwise_matches_, (float)conf_thresh_); std::vector seam_est_imgs_subset; std::vector imgs_subset; std::vector full_img_sizes_subset; for (size_t i = 0; i < indices_.size(); ++i) { imgs_subset.push_back(imgs_[indices_[i]]); seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]); full_img_sizes_subset.push_back(full_img_sizes_[indices_[i]]); } seam_est_imgs_ = seam_est_imgs_subset; imgs_ = imgs_subset; full_img_sizes_ = full_img_sizes_subset; if ((int)imgs_.size() < 2) { LOGLN("Need more images"); return ERR_NEED_MORE_IMGS; } return OK; } Stitcher::Status Stitcher::estimateCameraParams() { // estimate homography in global frame if (!(*estimator_)(features_, pairwise_matches_, cameras_)) return ERR_HOMOGRAPHY_EST_FAIL; for (size_t i = 0; i < cameras_.size(); ++i) { Mat R; cameras_[i].R.convertTo(R, CV_32F); cameras_[i].R = R; //LOGLN("Initial intrinsic parameters #" << indices_[i] + 1 << ":\n " << cameras_[i].K()); } bundle_adjuster_->setConfThresh(conf_thresh_); if (!(*bundle_adjuster_)(features_, pairwise_matches_, cameras_)) return ERR_CAMERA_PARAMS_ADJUST_FAIL; // Find median focal length and use it as final image scale std::vector focals; for (size_t i = 0; i < cameras_.size(); ++i) { //LOGLN("Camera #" << indices_[i] + 1 << ":\n" << cameras_[i].K()); focals.push_back(cameras_[i].focal); } std::sort(focals.begin(), focals.end()); if (focals.size() % 2 == 1) warped_image_scale_ = static_cast(focals[focals.size() / 2]); else warped_image_scale_ = static_cast(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f; if (do_wave_correct_) { std::vector rmats; for (size_t i = 0; i < cameras_.size(); ++i) rmats.push_back(cameras_[i].R.clone()); detail::waveCorrect(rmats, wave_correct_kind_); for (size_t i = 0; i < cameras_.size(); ++i) cameras_[i].R = rmats[i]; } return OK; } Stitcher::Status Stitcher::setTransform(InputArrayOfArrays images, const std::vector &cameras) { std::vector component; for (int i = 0; i < (int)images.total(); i++) component.push_back(i); return setTransform(images, cameras, component); } Stitcher::Status Stitcher::setTransform( InputArrayOfArrays images, const std::vector &cameras, const std::vector &component) { // CV_Assert(images.size() == cameras.size()); images.getUMatVector(imgs_); masks_.clear(); if ((int)imgs_.size() < 2) { LOGLN("Need more images"); return ERR_NEED_MORE_IMGS; } work_scale_ = 1; seam_work_aspect_ = 1; seam_scale_ = 1; bool is_work_scale_set = false; bool is_seam_scale_set = false; seam_est_imgs_.resize(imgs_.size()); full_img_sizes_.resize(imgs_.size()); for (size_t i = 0; i < imgs_.size(); ++i) { full_img_sizes_[i] = imgs_[i].size(); if (registr_resol_ < 0) { work_scale_ = 1; is_work_scale_set = true; } else { if (!is_work_scale_set) { work_scale_ = std::min(1.0, std::sqrt(registr_resol_ * 1e6 / full_img_sizes_[i].area())); is_work_scale_set = true; } } if (!is_seam_scale_set) { seam_scale_ = std::min(1.0, std::sqrt(seam_est_resol_ * 1e6 / full_img_sizes_[i].area())); seam_work_aspect_ = seam_scale_ / work_scale_; is_seam_scale_set = true; } resize(imgs_[i], seam_est_imgs_[i], Size(), seam_scale_, seam_scale_, INTER_LINEAR_EXACT); } features_.clear(); pairwise_matches_.clear(); indices_ = component; std::vector seam_est_imgs_subset; std::vector imgs_subset; std::vector full_img_sizes_subset; for (size_t i = 0; i < indices_.size(); ++i) { imgs_subset.push_back(imgs_[indices_[i]]); seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]); full_img_sizes_subset.push_back(full_img_sizes_[indices_[i]]); } seam_est_imgs_ = seam_est_imgs_subset; imgs_ = imgs_subset; full_img_sizes_ = full_img_sizes_subset; if ((int)imgs_.size() < 2) { LOGLN("Need more images"); return ERR_NEED_MORE_IMGS; } cameras_ = cameras; std::vector focals; for (size_t i = 0; i < cameras.size(); ++i) focals.push_back(cameras_[i].focal); std::sort(focals.begin(), focals.end()); if (focals.size() % 2 == 1) warped_image_scale_ = static_cast(focals[focals.size() / 2]); else warped_image_scale_ = static_cast(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f; return Status::OK; } CV_DEPRECATED Ptr createStitcher(bool /*ignored*/) { CV_INSTRUMENT_REGION(); return Stitcher::create(Stitcher::PANORAMA); } CV_DEPRECATED Ptr createStitcherScans(bool /*ignored*/) { CV_INSTRUMENT_REGION(); return Stitcher::create(Stitcher::SCANS); } } // namespace cv