/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #if 0 #include "_modelest.h" using namespace std; using namespace cv; class BareModelEstimator : public CvModelEstimator2 { public: BareModelEstimator(int modelPoints, CvSize modelSize, int maxBasicSolutions); virtual int runKernel( const CvMat*, const CvMat*, CvMat* ); virtual void computeReprojError( const CvMat*, const CvMat*, const CvMat*, CvMat* ); bool checkSubsetPublic( const CvMat* ms1, int count, bool checkPartialSubset ); }; BareModelEstimator::BareModelEstimator(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions) :CvModelEstimator2(_modelPoints, _modelSize, _maxBasicSolutions) { } int BareModelEstimator::runKernel( const CvMat*, const CvMat*, CvMat* ) { return 0; } void BareModelEstimator::computeReprojError( const CvMat*, const CvMat*, const CvMat*, CvMat* ) { } bool BareModelEstimator::checkSubsetPublic( const CvMat* ms1, int count, bool checkPartialSubset ) { checkPartialSubsets = checkPartialSubset; return checkSubset(ms1, count); } class CV_ModelEstimator2_Test : public cvtest::ArrayTest { public: CV_ModelEstimator2_Test(); protected: void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void fill_array( int test_case_idx, int i, int j, Mat& arr ); double get_success_error_level( int test_case_idx, int i, int j ); void run_func(); void prepare_to_validation( int test_case_idx ); bool checkPartialSubsets; int usedPointsCount; bool checkSubsetResult; int generalPositionsCount; int maxPointsCount; }; CV_ModelEstimator2_Test::CV_ModelEstimator2_Test() { generalPositionsCount = get_test_case_count() / 2; maxPointsCount = 100; test_array[INPUT].push_back(NULL); test_array[OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); } void CV_ModelEstimator2_Test::get_test_array_types_and_sizes( int /*test_case_idx*/, vector > &sizes, vector > &types ) { RNG &rng = ts->get_rng(); checkPartialSubsets = (cvtest::randInt(rng) % 2 == 0); int pointsCount = cvtest::randInt(rng) % maxPointsCount; usedPointsCount = pointsCount == 0 ? 0 : cvtest::randInt(rng) % pointsCount; sizes[INPUT][0] = cvSize(1, pointsCount); types[INPUT][0] = CV_64FC2; sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(1, 1); types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_8UC1; } void CV_ModelEstimator2_Test::fill_array( int test_case_idx, int i, int j, Mat& arr ) { if( i != INPUT ) { cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); return; } if (test_case_idx < generalPositionsCount) { //generate points in a general position (i.e. no three points can lie on the same line.) bool isGeneralPosition; do { ArrayTest::fill_array(test_case_idx, i, j, arr); //a simple check that the position is general: // for each line check that all other points don't belong to it isGeneralPosition = true; for (int startPointIndex = 0; startPointIndex < usedPointsCount && isGeneralPosition; startPointIndex++) { for (int endPointIndex = startPointIndex + 1; endPointIndex < usedPointsCount && isGeneralPosition; endPointIndex++) { for (int testPointIndex = 0; testPointIndex < usedPointsCount && isGeneralPosition; testPointIndex++) { if (testPointIndex == startPointIndex || testPointIndex == endPointIndex) { continue; } CV_Assert(arr.type() == CV_64FC2); Point2d tangentVector_1 = arr.at(endPointIndex) - arr.at(startPointIndex); Point2d tangentVector_2 = arr.at(testPointIndex) - arr.at(startPointIndex); const float eps = 1e-4f; //TODO: perhaps it is better to normalize the cross product by norms of the tangent vectors if (fabs(tangentVector_1.cross(tangentVector_2)) < eps) { isGeneralPosition = false; } } } } } while(!isGeneralPosition); } else { //create points in a degenerate position (there are at least 3 points belonging to the same line) ArrayTest::fill_array(test_case_idx, i, j, arr); if (usedPointsCount <= 2) { return; } RNG &rng = ts->get_rng(); int startPointIndex, endPointIndex, modifiedPointIndex; do { startPointIndex = cvtest::randInt(rng) % usedPointsCount; endPointIndex = cvtest::randInt(rng) % usedPointsCount; modifiedPointIndex = checkPartialSubsets ? usedPointsCount - 1 : cvtest::randInt(rng) % usedPointsCount; } while (startPointIndex == endPointIndex || startPointIndex == modifiedPointIndex || endPointIndex == modifiedPointIndex); double startWeight = cvtest::randReal(rng); CV_Assert(arr.type() == CV_64FC2); arr.at(modifiedPointIndex) = startWeight * arr.at(startPointIndex) + (1.0 - startWeight) * arr.at(endPointIndex); } } double CV_ModelEstimator2_Test::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { return 0; } void CV_ModelEstimator2_Test::prepare_to_validation( int test_case_idx ) { test_mat[OUTPUT][0].at(0) = checkSubsetResult; test_mat[REF_OUTPUT][0].at(0) = test_case_idx < generalPositionsCount || usedPointsCount <= 2; } void CV_ModelEstimator2_Test::run_func() { //make the input continuous Mat input = test_mat[INPUT][0].clone(); CvMat _input = input; RNG &rng = ts->get_rng(); int modelPoints = cvtest::randInt(rng); CvSize modelSize = cvSize(2, modelPoints); int maxBasicSolutions = cvtest::randInt(rng); BareModelEstimator modelEstimator(modelPoints, modelSize, maxBasicSolutions); checkSubsetResult = modelEstimator.checkSubsetPublic(&_input, usedPointsCount, checkPartialSubsets); } TEST(Calib3d_ModelEstimator2, accuracy) { CV_ModelEstimator2_Test test; test.safe_run(); } #endif