/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/photo/photo.hpp" #include using namespace cv; using namespace std; //#define DUMP_RESULTS #ifdef DUMP_RESULTS # define DUMP(image, path) imwrite(path, image) #else # define DUMP(image, path) #endif TEST(Photo_DenoisingGrayscale, regression) { string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/"; string original_path = folder + "lena_noised_gaussian_sigma=10.png"; string expected_path = folder + "lena_noised_denoised_grayscale_tw=7_sw=21_h=10.png"; Mat original = imread(original_path, CV_LOAD_IMAGE_GRAYSCALE); Mat expected = imread(expected_path, CV_LOAD_IMAGE_GRAYSCALE); ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path; ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path; Mat result; fastNlMeansDenoising(original, result, 10); DUMP(result, expected_path + ".res.png"); ASSERT_EQ(0, norm(result != expected)); } TEST(Photo_DenoisingColored, regression) { string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/"; string original_path = folder + "lena_noised_gaussian_sigma=10.png"; string expected_path = folder + "lena_noised_denoised_lab12_tw=7_sw=21_h=10_h2=10.png"; Mat original = imread(original_path, CV_LOAD_IMAGE_COLOR); Mat expected = imread(expected_path, CV_LOAD_IMAGE_COLOR); ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path; ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path; Mat result; fastNlMeansDenoisingColored(original, result, 10, 10); DUMP(result, expected_path + ".res.png"); ASSERT_EQ(0, norm(result != expected)); } TEST(Photo_DenoisingGrayscaleMulti, regression) { const int imgs_count = 3; string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/"; string expected_path = folder + "lena_noised_denoised_multi_tw=7_sw=21_h=15.png"; Mat expected = imread(expected_path, CV_LOAD_IMAGE_GRAYSCALE); ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path; vector original(imgs_count); for (int i = 0; i < imgs_count; i++) { string original_path = format("%slena_noised_gaussian_sigma=20_multi_%d.png", folder.c_str(), i); original[i] = imread(original_path, CV_LOAD_IMAGE_GRAYSCALE); ASSERT_FALSE(original[i].empty()) << "Could not load input image " << original_path; } Mat result; fastNlMeansDenoisingMulti(original, result, imgs_count / 2, imgs_count, 15); DUMP(result, expected_path + ".res.png"); ASSERT_EQ(0, norm(result != expected)); } TEST(Photo_DenoisingColoredMulti, regression) { const int imgs_count = 3; string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/"; string expected_path = folder + "lena_noised_denoised_multi_lab12_tw=7_sw=21_h=10_h2=15.png"; Mat expected = imread(expected_path, CV_LOAD_IMAGE_COLOR); ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path; vector original(imgs_count); for (int i = 0; i < imgs_count; i++) { string original_path = format("%slena_noised_gaussian_sigma=20_multi_%d.png", folder.c_str(), i); original[i] = imread(original_path, CV_LOAD_IMAGE_COLOR); ASSERT_FALSE(original[i].empty()) << "Could not load input image " << original_path; } Mat result; fastNlMeansDenoisingColoredMulti(original, result, imgs_count / 2, imgs_count, 10, 15); DUMP(result, expected_path + ".res.png"); ASSERT_EQ(0, norm(result != expected)); } TEST(Photo_White, issue_2646) { cv::Mat img(50, 50, CV_8UC1, cv::Scalar::all(255)); cv::Mat filtered; cv::fastNlMeansDenoising(img, filtered); int nonWhitePixelsCount = (int)img.total() - cv::countNonZero(filtered == img); ASSERT_EQ(0, nonWhitePixelsCount); }