/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_CUDAOPTFLOW_HPP__ #define __OPENCV_CUDAOPTFLOW_HPP__ #ifndef __cplusplus # error cudaoptflow.hpp header must be compiled as C++ #endif #include "opencv2/core/cuda.hpp" /** @addtogroup cuda @{ @defgroup cudaoptflow Optical Flow @} */ namespace cv { namespace cuda { //! @addtogroup cudaoptflow //! @{ /** @brief Class computing the optical flow for two images using Brox et al Optical Flow algorithm (@cite Brox2004). : */ class CV_EXPORTS BroxOpticalFlow { public: BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_) : alpha(alpha_), gamma(gamma_), scale_factor(scale_factor_), inner_iterations(inner_iterations_), outer_iterations(outer_iterations_), solver_iterations(solver_iterations_) { } //! Compute optical flow //! frame0 - source frame (supports only CV_32FC1 type) //! frame1 - frame to track (with the same size and type as frame0) //! u - flow horizontal component (along x axis) //! v - flow vertical component (along y axis) void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null()); //! flow smoothness float alpha; //! gradient constancy importance float gamma; //! pyramid scale factor float scale_factor; //! number of lagged non-linearity iterations (inner loop) int inner_iterations; //! number of warping iterations (number of pyramid levels) int outer_iterations; //! number of linear system solver iterations int solver_iterations; GpuMat buf; }; /** @brief Class used for calculating an optical flow. The class can calculate an optical flow for a sparse feature set or dense optical flow using the iterative Lucas-Kanade method with pyramids. @sa calcOpticalFlowPyrLK @note - An example of the Lucas Kanade optical flow algorithm can be found at opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp */ class CV_EXPORTS PyrLKOpticalFlow { public: PyrLKOpticalFlow(); /** @brief Calculate an optical flow for a sparse feature set. @param prevImg First 8-bit input image (supports both grayscale and color images). @param nextImg Second input image of the same size and the same type as prevImg . @param prevPts Vector of 2D points for which the flow needs to be found. It must be one row matrix with CV_32FC2 type. @param nextPts Output vector of 2D points (with single-precision floating-point coordinates) containing the calculated new positions of input features in the second image. When useInitialFlow is true, the vector must have the same size as in the input. @param status Output status vector (CV_8UC1 type). Each element of the vector is set to 1 if the flow for the corresponding features has been found. Otherwise, it is set to 0. @param err Output vector (CV_32FC1 type) that contains the difference between patches around the original and moved points or min eigen value if getMinEigenVals is checked. It can be NULL, if not needed. @sa calcOpticalFlowPyrLK */ void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err = 0); /** @brief Calculate dense optical flow. @param prevImg First 8-bit grayscale input image. @param nextImg Second input image of the same size and the same type as prevImg . @param u Horizontal component of the optical flow of the same size as input images, 32-bit floating-point, single-channel @param v Vertical component of the optical flow of the same size as input images, 32-bit floating-point, single-channel @param err Output vector (CV_32FC1 type) that contains the difference between patches around the original and moved points or min eigen value if getMinEigenVals is checked. It can be NULL, if not needed. */ void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0); /** @brief Releases inner buffers memory. */ void releaseMemory(); Size winSize; int maxLevel; int iters; bool useInitialFlow; private: std::vector prevPyr_; std::vector nextPyr_; GpuMat buf_; GpuMat uPyr_[2]; GpuMat vPyr_[2]; }; /** @brief Class computing a dense optical flow using the Gunnar Farneback’s algorithm. : */ class CV_EXPORTS FarnebackOpticalFlow { public: FarnebackOpticalFlow() { numLevels = 5; pyrScale = 0.5; fastPyramids = false; winSize = 13; numIters = 10; polyN = 5; polySigma = 1.1; flags = 0; } int numLevels; double pyrScale; bool fastPyramids; int winSize; int numIters; int polyN; double polySigma; int flags; /** @brief Computes a dense optical flow using the Gunnar Farneback’s algorithm. @param frame0 First 8-bit gray-scale input image @param frame1 Second 8-bit gray-scale input image @param flowx Flow horizontal component @param flowy Flow vertical component @param s Stream @sa calcOpticalFlowFarneback */ void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null()); /** @brief Releases unused auxiliary memory buffers. */ void releaseMemory() { frames_[0].release(); frames_[1].release(); pyrLevel_[0].release(); pyrLevel_[1].release(); M_.release(); bufM_.release(); R_[0].release(); R_[1].release(); blurredFrame_[0].release(); blurredFrame_[1].release(); pyramid0_.clear(); pyramid1_.clear(); } private: void prepareGaussian( int n, double sigma, float *g, float *xg, float *xxg, double &ig11, double &ig03, double &ig33, double &ig55); void setPolynomialExpansionConsts(int n, double sigma); void updateFlow_boxFilter( const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy, GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]); void updateFlow_gaussianBlur( const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy, GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]); GpuMat frames_[2]; GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2]; std::vector pyramid0_, pyramid1_; }; // Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method // // see reference: // [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow". // [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation". class CV_EXPORTS OpticalFlowDual_TVL1_CUDA { public: OpticalFlowDual_TVL1_CUDA(); void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy); void collectGarbage(); /** * Time step of the numerical scheme. */ double tau; /** * Weight parameter for the data term, attachment parameter. * This is the most relevant parameter, which determines the smoothness of the output. * The smaller this parameter is, the smoother the solutions we obtain. * It depends on the range of motions of the images, so its value should be adapted to each image sequence. */ double lambda; /** * Weight parameter for (u - v)^2, tightness parameter. * It serves as a link between the attachment and the regularization terms. * In theory, it should have a small value in order to maintain both parts in correspondence. * The method is stable for a large range of values of this parameter. */ double gamma; /** * parameter used for motion estimation. It adds a variable allowing for illumination variations * Set this parameter to 1. if you have varying illumination. * See: Chambolle et al, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging * Journal of Mathematical imaging and vision, may 2011 Vol 40 issue 1, pp 120-145 */ double theta; /** * Number of scales used to create the pyramid of images. */ int nscales; /** * Number of warpings per scale. * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale. * This is a parameter that assures the stability of the method. * It also affects the running time, so it is a compromise between speed and accuracy. */ int warps; /** * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time. * A small value will yield more accurate solutions at the expense of a slower convergence. */ double epsilon; /** * Stopping criterion iterations number used in the numerical scheme. */ int iterations; double scaleStep; bool useInitialFlow; private: void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2, GpuMat& u3); std::vector I0s; std::vector I1s; std::vector u1s; std::vector u2s; std::vector u3s; GpuMat I1x_buf; GpuMat I1y_buf; GpuMat I1w_buf; GpuMat I1wx_buf; GpuMat I1wy_buf; GpuMat grad_buf; GpuMat rho_c_buf; GpuMat p11_buf; GpuMat p12_buf; GpuMat p21_buf; GpuMat p22_buf; GpuMat p31_buf; GpuMat p32_buf; GpuMat diff_buf; GpuMat norm_buf; }; //! Calculates optical flow for 2 images using block matching algorithm */ CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr, Size block_size, Size shift_size, Size max_range, bool use_previous, GpuMat& velx, GpuMat& vely, GpuMat& buf, Stream& stream = Stream::Null()); class CV_EXPORTS FastOpticalFlowBM { public: void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null()); private: GpuMat buffer; GpuMat extended_I0; GpuMat extended_I1; }; /** @brief Interpolates frames (images) using provided optical flow (displacement field). @param frame0 First frame (32-bit floating point images, single channel). @param frame1 Second frame. Must have the same type and size as frame0 . @param fu Forward horizontal displacement. @param fv Forward vertical displacement. @param bu Backward horizontal displacement. @param bv Backward vertical displacement. @param pos New frame position. @param newFrame Output image. @param buf Temporary buffer, will have width x 6\*height size, CV_32FC1 type and contain 6 GpuMat: occlusion masks for first frame, occlusion masks for second, interpolated forward horizontal flow, interpolated forward vertical flow, interpolated backward horizontal flow, interpolated backward vertical flow. @param stream Stream for the asynchronous version. */ CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, const GpuMat& fu, const GpuMat& fv, const GpuMat& bu, const GpuMat& bv, float pos, GpuMat& newFrame, GpuMat& buf, Stream& stream = Stream::Null()); CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors); //! @} }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDAOPTFLOW_HPP__ */