//============================================================================ // Name : OpenEXRimages_HighDynamicRange_Retina_toneMapping_video.cpp // Author : Alexandre Benoit (benoit.alexandre.vision@gmail.com) // Version : 0.2 // Copyright : Alexandre Benoit, LISTIC Lab, december 2011 // Description : HighDynamicRange compression (tone mapping) for image sequences with the help of the Gipsa/Listic's retina in C++, Ansi-style // Known issues: the input OpenEXR sequences can have bad computed pixels that should be removed // => a simple method consists of cutting histogram edges (a slider for this on the UI is provided) // => however, in image sequences, this histogramm cut must be done in an elegant way from frame to frame... still not done... //============================================================================ #include #include #include #include "opencv2/bioinspired.hpp" // retina based algorithms #include "opencv2/imgproc.hpp" // cvCvtcolor function #include "opencv2/highgui.hpp" // display static void help(std::string errorMessage) { std::cout<<"Program init error : "< WARNING : image index number of digits cannot exceed 10"< to process images from memorial020d.exr to memorial045d.exr"<(i))), cv::Scalar::all(0), -1, 8, 0 ); rectangle( displayedCurveImage, cv::Point(0, 0), cv::Point((lowerLimit)*binW, 200), cv::Scalar::all(128), -1, 8, 0 ); rectangle( displayedCurveImage, cv::Point(displayedCurveImage.cols, 0), cv::Point((upperLimit)*binW, 200), cv::Scalar::all(128), -1, 8, 0 ); cv::imshow(figureTitle, displayedCurveImage); } /* * objective : get the gray level map of the input image and rescale it to the range [0-255] if rescale0_255=TRUE, simply trunks else */ static void rescaleGrayLevelMat(const cv::Mat &inputMat, cv::Mat &outputMat, const float histogramClippingLimit, const bool rescale0_255) { // adjust output matrix wrt the input size but single channel std::cout<<"Input image rescaling with histogram edges cutting (in order to eliminate bad pixels created during the HDR image creation) :"< image size (h,w,channels) = "< pixel coding (nbchannel, bytes per channel) = "< scale, offset = "<(0)=normalizedHist.at(0); int histLowerLimit=0, histUpperLimit=0; for (int i=1;i(i)=denseProb.at(i-1)+normalizedHist.at(i); //std::cout<(i)<<", "<(i)<(i)(i)<1.f-histogramClippingLimit) histUpperLimit=i; } // deduce min and max admitted gray levels float minInputValue = (float)histLowerLimit/histSize*255.f; float maxInputValue = (float)histUpperLimit/histSize*255.f; std::cout<<"=> Histogram limits " <<"\n\t"< normalizedHist value = "<(histLowerLimit)<<" => input gray level = "< normalizedHist value = "<(histUpperLimit)<<" => input gray level = "< Input Hist clipping values (max,min) = "< image size (h,w) = "< actually using a little less in order to let some more flexibility in range evolves... */ double maxInput1, minInput1; minMaxLoc(inputImage, &minInput1, &maxInput1); std::cout<<"FIRST IMAGE pixels values range (max,min) : "< the main application is tone mapping of HDR images (i.e. see on a 8bit display a more than 8bits coded (up to 16bits) image with details in high and low luminance ranges"< It applies a spectral whithening (mid-frequency details enhancement)"< high frequency spatio-temporal noise reduction"< low frequency luminance to be reduced (luminance range compression)"< local logarithmic luminance compression allows details to be enhanced in low light conditions\n"< reports comments/remarks at benoit.alexandre.vision@gmail.com"< more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"< 1. take a set of photos from the same viewpoint using bracketing ***"< 2. generate an OpenEXR image with tools like qtpfsgui.sourceforge.net ***"< 3. apply tone mapping with this program ***"< if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision) */ if (useLogSampling) { retina = createRetina(inputImage.size(),true, RETINA_COLOR_BAYER, true, 2.0, 10.0); } else// -> else allocate "classical" retina : retina = createRetina(inputImage.size()); // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup" retina->write("RetinaDefaultParameters.xml"); // desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here retina->activateMovingContoursProcessing(false); // declare retina output buffers cv::Mat retinaOutput_parvo; ///////////////////////////////////////////// // prepare displays and interactions histogramClippingValue=0; // default value... updated with interface slider std::string retinaInputCorrected("Retina input image (with cut edges histogram for basic pixels error avoidance)"); cv::namedWindow(retinaInputCorrected,1); cv::createTrackbar("histogram edges clipping limit", "Retina input image (with cut edges histogram for basic pixels error avoidance)",&histogramClippingValue,50,callBack_rescaleGrayLevelMat); std::string RetinaParvoWindow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping"); cv::namedWindow(RetinaParvoWindow, 1); colorSaturationFactor=3; cv::createTrackbar("Color saturation", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &colorSaturationFactor,5,callback_saturateColors); retinaHcellsGain=40; cv::createTrackbar("Hcells gain", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping",&retinaHcellsGain,100,callBack_updateRetinaParams); localAdaptation_photoreceptors=197; localAdaptation_Gcells=190; cv::createTrackbar("Ph sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams); cv::createTrackbar("Gcells sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_Gcells,199,callBack_updateRetinaParams); std::string powerTransformedInput("EXR image with basic processing : 16bits=>8bits with gamma correction"); ///////////////////////////////////////////// // apply default parameters of user interaction variables callBack_updateRetinaParams(1,NULL); // first call for default parameters setup callback_saturateColors(1, NULL); // processing loop with stop condition currentFrameIndex=startFrameIndex; while(currentFrameIndex <= endFrameIndex) { loadNewFrame(inputImageNamePrototype, currentFrameIndex, false); if (inputImage.empty()) { std::cout<<"Could not load new image (index = "<8bits linear rescaling ", imageInputRescaled); cv::Mat gammaTransformedImage; cv::pow(imageInputRescaled, 1./5, gammaTransformedImage); // apply gamma curve: img = img ** (1./5) imshow(powerTransformedInput, gammaTransformedImage); // run retina filter retina->run(imageInputRescaled); // Retrieve and display retina output retina->getParvo(retinaOutput_parvo); cv::imshow(retinaInputCorrected, imageInputRescaled/255.f); cv::imshow(RetinaParvoWindow, retinaOutput_parvo); cv::waitKey(4); // jump to next frame ++currentFrameIndex; } }catch(cv::Exception e) { std::cerr<<"Error using Retina : "<