/* dlaed1.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* Subroutine */ int dlaed1_(integer *n, doublereal *d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer q_dim1, q_offset, i__1, i__2; /* Local variables */ integer i__, k, n1, n2, is, iw, iz, iq2, zpp1, indx, indxc; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); integer indxp; extern /* Subroutine */ int dlaed2_(integer *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, integer *, integer *), dlaed3_(integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, integer *); integer idlmda; extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, integer *, integer *, integer *), xerbla_(char *, integer *); integer coltyp; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLAED1 computes the updated eigensystem of a diagonal */ /* matrix after modification by a rank-one symmetric matrix. This */ /* routine is used only for the eigenproblem which requires all */ /* eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles */ /* the case in which eigenvalues only or eigenvalues and eigenvectors */ /* of a full symmetric matrix (which was reduced to tridiagonal form) */ /* are desired. */ /* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */ /* where Z = Q'u, u is a vector of length N with ones in the */ /* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */ /* The eigenvectors of the original matrix are stored in Q, and the */ /* eigenvalues are in D. The algorithm consists of three stages: */ /* The first stage consists of deflating the size of the problem */ /* when there are multiple eigenvalues or if there is a zero in */ /* the Z vector. For each such occurence the dimension of the */ /* secular equation problem is reduced by one. This stage is */ /* performed by the routine DLAED2. */ /* The second stage consists of calculating the updated */ /* eigenvalues. This is done by finding the roots of the secular */ /* equation via the routine DLAED4 (as called by DLAED3). */ /* This routine also calculates the eigenvectors of the current */ /* problem. */ /* The final stage consists of computing the updated eigenvectors */ /* directly using the updated eigenvalues. The eigenvectors for */ /* the current problem are multiplied with the eigenvectors from */ /* the overall problem. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The dimension of the symmetric tridiagonal matrix. N >= 0. */ /* D (input/output) DOUBLE PRECISION array, dimension (N) */ /* On entry, the eigenvalues of the rank-1-perturbed matrix. */ /* On exit, the eigenvalues of the repaired matrix. */ /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */ /* On entry, the eigenvectors of the rank-1-perturbed matrix. */ /* On exit, the eigenvectors of the repaired tridiagonal matrix. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= max(1,N). */ /* INDXQ (input/output) INTEGER array, dimension (N) */ /* On entry, the permutation which separately sorts the two */ /* subproblems in D into ascending order. */ /* On exit, the permutation which will reintegrate the */ /* subproblems back into sorted order, */ /* i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. */ /* RHO (input) DOUBLE PRECISION */ /* The subdiagonal entry used to create the rank-1 modification. */ /* CUTPNT (input) INTEGER */ /* The location of the last eigenvalue in the leading sub-matrix. */ /* min(1,N) <= CUTPNT <= N/2. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N + N**2) */ /* IWORK (workspace) INTEGER array, dimension (4*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = 1, an eigenvalue did not converge */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Jeff Rutter, Computer Science Division, University of California */ /* at Berkeley, USA */ /* Modified by Francoise Tisseur, University of Tennessee. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --indxq; --work; --iwork; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*ldq < max(1,*n)) { *info = -4; } else /* if(complicated condition) */ { /* Computing MIN */ i__1 = 1, i__2 = *n / 2; if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) { *info = -7; } } if (*info != 0) { i__1 = -(*info); xerbla_("DLAED1", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* The following values are integer pointers which indicate */ /* the portion of the workspace */ /* used by a particular array in DLAED2 and DLAED3. */ iz = 1; idlmda = iz + *n; iw = idlmda + *n; iq2 = iw + *n; indx = 1; indxc = indx + *n; coltyp = indxc + *n; indxp = coltyp + *n; /* Form the z-vector which consists of the last row of Q_1 and the */ /* first row of Q_2. */ dcopy_(cutpnt, &q[*cutpnt + q_dim1], ldq, &work[iz], &c__1); zpp1 = *cutpnt + 1; i__1 = *n - *cutpnt; dcopy_(&i__1, &q[zpp1 + zpp1 * q_dim1], ldq, &work[iz + *cutpnt], &c__1); /* Deflate eigenvalues. */ dlaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[ iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[ indxc], &iwork[indxp], &iwork[coltyp], info); if (*info != 0) { goto L20; } /* Solve Secular Equation. */ if (k != 0) { is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp + 1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2; dlaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda], &work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[ is], info); if (*info != 0) { goto L20; } /* Prepare the INDXQ sorting permutation. */ n1 = k; n2 = *n - k; dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { indxq[i__] = i__; /* L10: */ } } L20: return 0; /* End of DLAED1 */ } /* dlaed1_ */