#!/usr/bin/python from opencv.cv import * from opencv.highgui import * import sys # Rearrange the quadrants of Fourier image so that the origin is at # the image center # src & dst arrays of equal size & type def cvShiftDFT(src_arr, dst_arr ): size = cvGetSize(src_arr) dst_size = cvGetSize(dst_arr) if(dst_size.width != size.width or dst_size.height != size.height) : cvError( CV_StsUnmatchedSizes, "cvShiftDFT", "Source and Destination arrays must have equal sizes", __FILE__, __LINE__ ) if(src_arr is dst_arr): tmp = cvCreateMat(size.height/2, size.width/2, cvGetElemType(src_arr)) cx = size.width/2 cy = size.height/2 # image center q1 = cvGetSubRect( src_arr, cvRect(0,0,cx, cy) ) q2 = cvGetSubRect( src_arr, cvRect(cx,0,cx,cy) ) q3 = cvGetSubRect( src_arr, cvRect(cx,cy,cx,cy) ) q4 = cvGetSubRect( src_arr, cvRect(0,cy,cx,cy) ) d1 = cvGetSubRect( src_arr, cvRect(0,0,cx,cy) ) d2 = cvGetSubRect( src_arr, cvRect(cx,0,cx,cy) ) d3 = cvGetSubRect( src_arr, cvRect(cx,cy,cx,cy) ) d4 = cvGetSubRect( src_arr, cvRect(0,cy,cx,cy) ) if(src_arr is not dst_arr): if( not CV_ARE_TYPES_EQ( q1, d1 )): cvError( CV_StsUnmatchedFormats, "cvShiftDFT", "Source and Destination arrays must have the same format", __FILE__, __LINE__ ) cvCopy(q3, d1) cvCopy(q4, d2) cvCopy(q1, d3) cvCopy(q2, d4) else: cvCopy(q3, tmp) cvCopy(q1, q3) cvCopy(tmp, q1) cvCopy(q4, tmp) cvCopy(q2, q4) cvCopy(tmp, q2) if __name__ == "__main__": im = cvLoadImage( sys.argv[1], CV_LOAD_IMAGE_GRAYSCALE) realInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1) imaginaryInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1) complexInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 2) cvScale(im, realInput, 1.0, 0.0) cvZero(imaginaryInput) cvMerge(realInput, imaginaryInput, None, None, complexInput) dft_M = cvGetOptimalDFTSize( im.height - 1 ) dft_N = cvGetOptimalDFTSize( im.width - 1 ) dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 ) image_Re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1) image_Im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1) # copy A to dft_A and pad dft_A with zeros tmp = cvGetSubRect( dft_A, cvRect(0,0, im.width, im.height)) cvCopy( complexInput, tmp, None ) if(dft_A.width > im.width): tmp = cvGetSubRect( dft_A, cvRect(im.width,0, dft_N - im.width, im.height)) cvZero( tmp ) # no need to pad bottom part of dft_A with zeros because of # use nonzero_rows parameter in cvDFT() call below cvDFT( dft_A, dft_A, CV_DXT_FORWARD, complexInput.height ) cvNamedWindow("win", 0) cvNamedWindow("magnitude", 0) cvShowImage("win", im) # Split Fourier in real and imaginary parts cvSplit( dft_A, image_Re, image_Im, None, None ) # Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) cvPow( image_Re, image_Re, 2.0) cvPow( image_Im, image_Im, 2.0) cvAdd( image_Re, image_Im, image_Re, None) cvPow( image_Re, image_Re, 0.5 ) # Compute log(1 + Mag) cvAddS( image_Re, cvScalarAll(1.0), image_Re, None ) # 1 + Mag cvLog( image_Re, image_Re ) # log(1 + Mag) # Rearrange the quadrants of Fourier image so that the origin is at # the image center cvShiftDFT( image_Re, image_Re ) min, max, pt1, pt2 = cvMinMaxLoc(image_Re) cvScale(image_Re, image_Re, 1.0/(max-min), 1.0*(-min)/(max-min)) cvShowImage("magnitude", image_Re) cvWaitKey(0)