/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_CUDABGSEGM_HPP__ #define __OPENCV_CUDABGSEGM_HPP__ #ifndef __cplusplus # error cudabgsegm.hpp header must be compiled as C++ #endif #include "opencv2/core/cuda.hpp" #include "opencv2/video/background_segm.hpp" /** @addtogroup cuda @{ @defgroup cudabgsegm Background Segmentation @} */ namespace cv { namespace cuda { //! @addtogroup cudabgsegm //! @{ //////////////////////////////////////////////////// // MOG /** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm. The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in @cite MOG2001. @sa BackgroundSubtractorMOG @note - An example on gaussian mixture based background/foreground segmantation can be found at opencv_source_code/samples/gpu/bgfg_segm.cpp */ class CV_EXPORTS BackgroundSubtractorMOG : public cv::BackgroundSubtractor { public: using cv::BackgroundSubtractor::apply; virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0; using cv::BackgroundSubtractor::getBackgroundImage; virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0; virtual int getHistory() const = 0; virtual void setHistory(int nframes) = 0; virtual int getNMixtures() const = 0; virtual void setNMixtures(int nmix) = 0; virtual double getBackgroundRatio() const = 0; virtual void setBackgroundRatio(double backgroundRatio) = 0; virtual double getNoiseSigma() const = 0; virtual void setNoiseSigma(double noiseSigma) = 0; }; /** @brief Creates mixture-of-gaussian background subtractor @param history Length of the history. @param nmixtures Number of Gaussian mixtures. @param backgroundRatio Background ratio. @param noiseSigma Noise strength (standard deviation of the brightness or each color channel). 0 means some automatic value. */ CV_EXPORTS Ptr createBackgroundSubtractorMOG(int history = 200, int nmixtures = 5, double backgroundRatio = 0.7, double noiseSigma = 0); //////////////////////////////////////////////////// // MOG2 /** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm. The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in @cite MOG2004. @sa BackgroundSubtractorMOG2 */ class CV_EXPORTS BackgroundSubtractorMOG2 : public cv::BackgroundSubtractorMOG2 { public: using cv::BackgroundSubtractorMOG2::apply; using cv::BackgroundSubtractorMOG2::getBackgroundImage; virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0; virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0; }; /** @brief Creates MOG2 Background Subtractor @param history Length of the history. @param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model to decide whether a pixel is well described by the background model. This parameter does not affect the background update. @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the speed a bit, so if you do not need this feature, set the parameter to false. */ CV_EXPORTS Ptr createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true); //////////////////////////////////////////////////// // GMG /** @brief Background/Foreground Segmentation Algorithm. The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in @cite GMG2012. */ class CV_EXPORTS BackgroundSubtractorGMG : public cv::BackgroundSubtractor { public: using cv::BackgroundSubtractor::apply; virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0; virtual int getMaxFeatures() const = 0; virtual void setMaxFeatures(int maxFeatures) = 0; virtual double getDefaultLearningRate() const = 0; virtual void setDefaultLearningRate(double lr) = 0; virtual int getNumFrames() const = 0; virtual void setNumFrames(int nframes) = 0; virtual int getQuantizationLevels() const = 0; virtual void setQuantizationLevels(int nlevels) = 0; virtual double getBackgroundPrior() const = 0; virtual void setBackgroundPrior(double bgprior) = 0; virtual int getSmoothingRadius() const = 0; virtual void setSmoothingRadius(int radius) = 0; virtual double getDecisionThreshold() const = 0; virtual void setDecisionThreshold(double thresh) = 0; virtual bool getUpdateBackgroundModel() const = 0; virtual void setUpdateBackgroundModel(bool update) = 0; virtual double getMinVal() const = 0; virtual void setMinVal(double val) = 0; virtual double getMaxVal() const = 0; virtual void setMaxVal(double val) = 0; }; /** @brief Creates GMG Background Subtractor @param initializationFrames Number of frames of video to use to initialize histograms. @param decisionThreshold Value above which pixel is determined to be FG. */ CV_EXPORTS Ptr createBackgroundSubtractorGMG(int initializationFrames = 120, double decisionThreshold = 0.8); //////////////////////////////////////////////////// // FGD /** @brief The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in @cite FGD2003. @sa BackgroundSubtractor */ class CV_EXPORTS BackgroundSubtractorFGD : public cv::BackgroundSubtractor { public: /** @brief Returns the output foreground regions calculated by findContours. @param foreground_regions Output array (CPU memory). */ virtual void getForegroundRegions(OutputArrayOfArrays foreground_regions) = 0; }; struct CV_EXPORTS FGDParams { int Lc; //!< Quantized levels per 'color' component. Power of two, typically 32, 64 or 128. int N1c; //!< Number of color vectors used to model normal background color variation at a given pixel. int N2c; //!< Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c. //!< Used to allow the first N1c vectors to adapt over time to changing background. int Lcc; //!< Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64. int N1cc; //!< Number of color co-occurrence vectors used to model normal background color variation at a given pixel. int N2cc; //!< Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc. //!< Used to allow the first N1cc vectors to adapt over time to changing background. bool is_obj_without_holes; //!< If TRUE we ignore holes within foreground blobs. Defaults to TRUE. int perform_morphing; //!< Number of erode-dilate-erode foreground-blob cleanup iterations. //!< These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1. float alpha1; //!< How quickly we forget old background pixel values seen. Typically set to 0.1. float alpha2; //!< "Controls speed of feature learning". Depends on T. Typical value circa 0.005. float alpha3; //!< Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1. float delta; //!< Affects color and color co-occurrence quantization, typically set to 2. float T; //!< A percentage value which determines when new features can be recognized as new background. (Typically 0.9). float minArea; //!< Discard foreground blobs whose bounding box is smaller than this threshold. //! default Params FGDParams(); }; /** @brief Creates FGD Background Subtractor @param params Algorithm's parameters. See @cite FGD2003 for explanation. */ CV_EXPORTS Ptr createBackgroundSubtractorFGD(const FGDParams& params = FGDParams()); //! @} }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDABGSEGM_HPP__ */