
Matlab Code Generator for OpenCV
Google Summer of Code 2013 Proposal

Hilton Bristow

1 Summary
The computer vision community is largely divided between those who code in Matlab and those who code
in C++ using the OpenCV library. This division has added a barrier to easy, transparent sharing of code
amongst researchers. My project aims to address this issue, by adding a set of auto-generated Matlab
bindings and tools to OpenCV so that Matlab users can easily access the core functionality of OpenCV as
well as applications written by researchers more familiar with C++.

2 Introduction
The ability to verify the claims of other authors is critical to creating a respectable, progressive scientific
community. The idea of reproducible research is that the ultimate product of research should be a paper
along with the full computational environment used to produce the results in that paper. A significant
component of this environment is the code.

Within the computer vision community, there exist two dominant programming languages: Matlab1 and
C++. The appeal of the former is its reduced syntax and lack of peripheral requirements such as compilation.
This is a boon for researchers who are not intimate with programming languages. Matlab comes prepackaged
with a large library of functionality (called “toolboxes”) dedicated to image manipulation and the absence of
compilation means running someone else’s code is normally as easy as adding the folder to the PATH and
hitting run.

C++, on the other hand, is lightning fast in comparison to Matlab. For computationally intensive
applications – and many computer vision applications certainly fall into this category – this can mean the
difference between running a detector at 30fps rather than 1fps, or waiting to learn a classifier for a day rather
than a week. The defacto standard computer vision library for C++ is OpenCV (http://opencv.org). The
library has powerful matrix expressions and functionality similar to Matlab.

But herein lies the problem. The presence of these two languages has added a barrier to the sharing
of code within the community. Matlab’s dynamic typing and interpreter make it excellent for prototyping,
while C++ is faster and safer for large applications.

3 The Project
This project aims to bring together the best of Matlab and C++ for computer vision researchers, by providing
a service for auto-generating Matlab mex2 files from C++ code using OpenCV. The main functionality this
will provide will be (i) to make all of OpenCV’s base functionality available natively in Matlab, (ii) to allow
Matlab users to use OpenCV expressions in their mex files, and (iii) for researchers who use C++ to easily
provide Matlab hooks so users of Matlab can run their code too.

This project contains 5 principal components, each detailed below.
1Matlab is a trademark of The MathWorks, Inc.
2mex files are dynamic C++ libraries with Matlab hooks.

1

http://opencv.org


3.1 cmake
cmake is the default build system for OpenCV. Adding Matlab bindings first requires compile support and
detection of the Matlab installation. KitWare distributes a version of FindMatlab.cmake but it is sorely out
of date and contains a lot of hard coded parameters. This part of the project involves rewriting that module
to be more cross platform and robust to version changes.

3.2 Parsing OpenCV Declarations
OpenCV includes a C++ header parser in the python module to parse C++ declarations, including names-
paces, classes, functions, constants and enums. So the hard work here has been done. However, the output
of the parser in its raw form is not very amenable to template population. This part of the project involves
writing a Refactorer python class to take the output of the parser and refactor it into a semantic tree.

3.3 Type Conversions
The major component of this project requires translating OpenCV types to Matlab types and visa versa. This
will be handled transparently by a C++ Bridge class providing either explicit or implicit type conversions.
The appeal of a bridging class is that it is easy to extend when new types are used (either by the user,
OpenCV or new standards).

Some care must be taken in passing C++ class instances back to Matlab due to the way memory is
handled. Fortunately the Matlab community has discussed this in depth and has devised a set of best
practices.

3.4 Populating Templates
Matlab mex gateway functions have a characteristic form that is well suited to template population. In this
project I will use Jinja (http://jinja.pocoo.org/), a python template engine derived from the django
web framework. Jinja has powerful filters and implements a model-view-controller paradigm to separate
logic and syntax. Coupled with the refactored parse tree and type converter, this will produce templates for
documentation, standalone functions and entire classes that are highly maintainable and modular.

3.5 Ancillaries
With the code generator framework in place, this will enable me to easily write functionality to:

• generate wrappers for all of OpenCV,

• write a custom mex “compiler” that can take an arbitrary C++ file containing OpenCV definitions,
and automagically create a mex gateway, and

• encapsulate the entire public API of a C++ library (say, for face tracking) so that its methods can be
called from within Matlab

One fringe component I will also write is support for reading and writing Matlab’s .mat file format version
7 and 7.3 to cv::FileStorage. I have already written some of the code as part of a personal project.

4 Incumbents
The excellent mexopencv toolbox (https://github.com/kyamagu/mexopencv) already provides a large
amount of the functionality described in this project. This, however, introduces a number of difficulties
for the maintainers of OpenCV. Specifically:

• The wrappers are written by a 3rd party, which divides the experience for users. Matlab users are often
less familiar with the intricacies of dependencies, and would prefer a solution that Just WorksTM. A
fully integrated Matlab generator means 1 download, 1 bug tracker, 1 maintaining body and conveys
the image of core functionality.

http://jinja.pocoo.org/
https://github.com/kyamagu/mexopencv


• The wrappers are hand-written, so any changes to the opencv C++ API will take time to propagate
to the mexopencv bindings.

• Auto-generated wrappers reflect exactly the functionality available dictated by the OpenCV version,
compiled modules, extras, etc. API changes or optional features will not influence or break old versions
of the generator.

• mexopencv does not come with some of the utilities we would like to offer.

5 Additional Info
Project discussion: http://answers.opencv.org/question/9487/matlab-api-for-opencv/

http://answers.opencv.org/question/9487/matlab-api-for-opencv/

