/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/highgui.hpp" using namespace std; using namespace cv; const string FEATURES2D_DIR = "features2d"; const string IMAGE_FILENAME = "tsukuba.png"; const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors"; /****************************************************************************************\ * Regression tests for descriptor extractors. * \****************************************************************************************/ static void writeMatInBin( const Mat& mat, const string& filename ) { FILE* f = fopen( filename.c_str(), "wb"); if( f ) { int type = mat.type(); fwrite( (void*)&mat.rows, sizeof(int), 1, f ); fwrite( (void*)&mat.cols, sizeof(int), 1, f ); fwrite( (void*)&type, sizeof(int), 1, f ); int dataSize = (int)(mat.step * mat.rows * mat.channels()); fwrite( (void*)&dataSize, sizeof(int), 1, f ); fwrite( (void*)mat.data, 1, dataSize, f ); fclose(f); } } static Mat readMatFromBin( const string& filename ) { FILE* f = fopen( filename.c_str(), "rb" ); if( f ) { int rows, cols, type, dataSize; size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f ); size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f ); size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f ); size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f ); CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1); uchar* data = (uchar*)cvAlloc(dataSize); size_t elements_read = fread( (void*)data, 1, dataSize, f ); CV_Assert(elements_read == (size_t)(dataSize)); fclose(f); return Mat( rows, cols, type, data ); } return Mat(); } template class CV_DescriptorExtractorTest : public cvtest::BaseTest { public: typedef typename Distance::ValueType ValueType; typedef typename Distance::ResultType DistanceType; CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr& _dextractor, Distance d = Distance() ): name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) {} protected: virtual void createDescriptorExtractor() {} void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors ) { if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() ) { ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } CV_Assert( DataType::type == validDescriptors.type() ); int dimension = validDescriptors.cols; DistanceType curMaxDist = std::numeric_limits::min(); for( int y = 0; y < validDescriptors.rows; y++ ) { DistanceType dist = distance( validDescriptors.ptr(y), calcDescriptors.ptr(y), dimension ); if( dist > curMaxDist ) curMaxDist = dist; } stringstream ss; ss << "Max distance between valid and computed descriptors " << curMaxDist; if( curMaxDist < maxDist ) ss << "." << endl; else { ss << ">" << maxDist << " - bad accuracy!"<< endl; ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } ts->printf(cvtest::TS::LOG, ss.str().c_str() ); } void emptyDataTest() { assert( !dextractor.empty() ); // One image. Mat image; vector keypoints; Mat descriptors; try { dextractor->compute( image, keypoints, descriptors ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } image.create( 50, 50, CV_8UC3 ); try { dextractor->compute( image, keypoints, descriptors ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } // Several images. vector images; vector > keypointsCollection; vector descriptorsCollection; try { dextractor->compute( images, keypointsCollection, descriptorsCollection ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } } void regressionTest() { assert( !dextractor.empty() ); // Read the test image. string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; Mat img = imread( imgFilename ); if( img.empty() ) { ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } vector keypoints; FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ ); if( fs.isOpened() ) { read( fs.getFirstTopLevelNode(), keypoints ); Mat calcDescriptors; double t = (double)getTickCount(); dextractor->compute( img, keypoints, calcDescriptors ); t = getTickCount() - t; ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)cvGetTickFrequency()*1000.)/calcDescriptors.rows); if( calcDescriptors.rows != (int)keypoints.size() ) { ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" ); ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() ); ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } if( calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType() ) { ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" ); ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() ); ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols ); ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() ); ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } // TODO read and write descriptor extractor parameters and check them Mat validDescriptors = readDescriptors(); if( !validDescriptors.empty() ) compareDescriptors( validDescriptors, calcDescriptors ); else { if( !writeDescriptors( calcDescriptors ) ) { ts->printf( cvtest::TS::LOG, "Descriptors can not be written.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } } } else { ts->printf( cvtest::TS::LOG, "Compute and write keypoints.\n" ); fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE ); if( fs.isOpened() ) { ORB fd; fd.detect(img, keypoints); write( fs, "keypoints", keypoints ); } else { ts->printf(cvtest::TS::LOG, "File for writting keypoints can not be opened.\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } } } void run(int) { createDescriptorExtractor(); if( dextractor.empty() ) { ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } emptyDataTest(); regressionTest(); ts->set_failed_test_info( cvtest::TS::OK ); } virtual Mat readDescriptors() { Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); return res; } virtual bool writeDescriptors( Mat& descs ) { writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); return true; } string name; const DistanceType maxDist; Ptr dextractor; Distance distance; private: CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; } }; /****************************************************************************************\ * Tests registrations * \****************************************************************************************/ TEST( Features2d_DescriptorExtractor_BRISK, regression ) { CV_DescriptorExtractorTest test( "descriptor-brisk", (CV_DescriptorExtractorTest::DistanceType)2.f, DescriptorExtractor::create("BRISK") ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_ORB, regression ) { // TODO adjust the parameters below CV_DescriptorExtractorTest test( "descriptor-orb", (CV_DescriptorExtractorTest::DistanceType)12.f, DescriptorExtractor::create("ORB") ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_FREAK, regression ) { // TODO adjust the parameters below CV_DescriptorExtractorTest test( "descriptor-freak", (CV_DescriptorExtractorTest::DistanceType)12.f, DescriptorExtractor::create("FREAK") ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_BRIEF, regression ) { CV_DescriptorExtractorTest test( "descriptor-brief", 1, DescriptorExtractor::create("BRIEF") ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_OpponentBRIEF, regression ) { CV_DescriptorExtractorTest test( "descriptor-opponent-brief", 1, DescriptorExtractor::create("OpponentBRIEF") ); test.safe_run(); }