/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/videostab/stabilizer.hpp" #include "opencv2/videostab/ring_buffer.hpp" using namespace std; namespace cv { namespace videostab { StabilizerBase::StabilizerBase() { setLog(new LogToStdout()); setFrameSource(new NullFrameSource()); setMotionEstimator(new PyrLkRobustMotionEstimator()); setDeblurer(new NullDeblurer()); setInpainter(new NullInpainter()); setRadius(15); setTrimRatio(0); setCorrectionForInclusion(false); setBorderMode(BORDER_REPLICATE); } void StabilizerBase::reset() { frameSize_ = Size(0, 0); frameMask_ = Mat(); curPos_ = -1; curStabilizedPos_ = -1; doDeblurring_ = false; preProcessedFrame_ = Mat(); doInpainting_ = false; inpaintingMask_ = Mat(); frames_.clear(); motions_.clear(); blurrinessRates_.clear(); stabilizedFrames_.clear(); stabilizedMasks_.clear(); stabilizationMotions_.clear(); } Mat StabilizerBase::nextStabilizedFrame() { // check if we've processed all frames already if (curStabilizedPos_ == curPos_ && curStabilizedPos_ != -1) return Mat(); bool processed; do processed = doOneIteration(); while (processed && curStabilizedPos_ == -1); // check if frame source is empty if (curStabilizedPos_ == -1) return Mat(); return postProcessFrame(at(curStabilizedPos_, stabilizedFrames_)); } bool StabilizerBase::doOneIteration() { Mat frame = frameSource_->nextFrame(); if (!frame.empty()) { curPos_++; if (curPos_ > 0) { at(curPos_, frames_) = frame; if (doDeblurring_) at(curPos_, blurrinessRates_) = calcBlurriness(frame); at(curPos_ - 1, motions_) = estimateMotion(); if (curPos_ >= radius_) { curStabilizedPos_ = curPos_ - radius_; stabilizeFrame(); } } else setUp(frame); log_->print("."); return true; } if (curStabilizedPos_ < curPos_) { curStabilizedPos_++; at(curStabilizedPos_ + radius_, frames_) = at(curPos_, frames_); at(curStabilizedPos_ + radius_ - 1, motions_) = Mat::eye(3, 3, CV_32F); stabilizeFrame(); log_->print("."); return true; } return false; } void StabilizerBase::setUp(const Mat &firstFrame) { InpainterBase *inpainter = static_cast(inpainter_); doInpainting_ = dynamic_cast(inpainter) == 0; if (doInpainting_) { inpainter_->setMotionModel(motionEstimator_->motionModel()); inpainter_->setFrames(frames_); inpainter_->setMotions(motions_); inpainter_->setStabilizedFrames(stabilizedFrames_); inpainter_->setStabilizationMotions(stabilizationMotions_); } DeblurerBase *deblurer = static_cast(deblurer_); doDeblurring_ = dynamic_cast(deblurer) == 0; if (doDeblurring_) { blurrinessRates_.resize(2*radius_ + 1); float blurriness = calcBlurriness(firstFrame); for (int i = -radius_; i <= 0; ++i) at(i, blurrinessRates_) = blurriness; deblurer_->setFrames(frames_); deblurer_->setMotions(motions_); deblurer_->setBlurrinessRates(blurrinessRates_); } log_->print("processing frames"); } void StabilizerBase::stabilizeFrame() { Mat stabilizationMotion = estimateStabilizationMotion(); if (doCorrectionForInclusion_) stabilizationMotion = ensureInclusionConstraint(stabilizationMotion, frameSize_, trimRatio_); at(curStabilizedPos_, stabilizationMotions_) = stabilizationMotion; if (doDeblurring_) { at(curStabilizedPos_, frames_).copyTo(preProcessedFrame_); deblurer_->deblur(curStabilizedPos_, preProcessedFrame_); } else preProcessedFrame_ = at(curStabilizedPos_, frames_); // apply stabilization transformation if (motionEstimator_->motionModel() != MM_HOMOGRAPHY) warpAffine( preProcessedFrame_, at(curStabilizedPos_, stabilizedFrames_), stabilizationMotion(Rect(0,0,3,2)), frameSize_, INTER_LINEAR, borderMode_); else warpPerspective( preProcessedFrame_, at(curStabilizedPos_, stabilizedFrames_), stabilizationMotion, frameSize_, INTER_LINEAR, borderMode_); if (doInpainting_) { if (motionEstimator_->motionModel() != MM_HOMOGRAPHY) warpAffine( frameMask_, at(curStabilizedPos_, stabilizedMasks_), stabilizationMotion(Rect(0,0,3,2)), frameSize_, INTER_NEAREST); else warpPerspective( frameMask_, at(curStabilizedPos_, stabilizedMasks_), stabilizationMotion, frameSize_, INTER_NEAREST); erode(at(curStabilizedPos_, stabilizedMasks_), at(curStabilizedPos_, stabilizedMasks_), Mat()); at(curStabilizedPos_, stabilizedMasks_).copyTo(inpaintingMask_); inpainter_->inpaint( curStabilizedPos_, at(curStabilizedPos_, stabilizedFrames_), inpaintingMask_); } } Mat StabilizerBase::postProcessFrame(const Mat &frame) { // trim frame int dx = static_cast(floor(trimRatio_ * frame.cols)); int dy = static_cast(floor(trimRatio_ * frame.rows)); return frame(Rect(dx, dy, frame.cols - 2*dx, frame.rows - 2*dy)); } OnePassStabilizer::OnePassStabilizer() { setMotionFilter(new GaussianMotionFilter()); reset(); } void OnePassStabilizer::reset() { StabilizerBase::reset(); } void OnePassStabilizer::setUp(const Mat &firstFrame) { frameSize_ = firstFrame.size(); frameMask_.create(frameSize_, CV_8U); frameMask_.setTo(255); int cacheSize = 2*radius_ + 1; frames_.resize(cacheSize); stabilizedFrames_.resize(cacheSize); stabilizedMasks_.resize(cacheSize); motions_.resize(cacheSize); stabilizationMotions_.resize(cacheSize); for (int i = -radius_; i < 0; ++i) { at(i, motions_) = Mat::eye(3, 3, CV_32F); at(i, frames_) = firstFrame; } at(0, frames_) = firstFrame; StabilizerBase::setUp(firstFrame); } Mat OnePassStabilizer::estimateMotion() { return motionEstimator_->estimate(at(curPos_ - 1, frames_), at(curPos_, frames_)); } Mat OnePassStabilizer::estimateStabilizationMotion() { return motionFilter_->stabilize(curStabilizedPos_, motions_, make_pair(0, curPos_)); } Mat OnePassStabilizer::postProcessFrame(const Mat &frame) { return StabilizerBase::postProcessFrame(frame); } TwoPassStabilizer::TwoPassStabilizer() { setMotionStabilizer(new GaussianMotionFilter()); setWobbleSuppressor(new NullWobbleSuppressor()); setEstimateTrimRatio(false); reset(); } void TwoPassStabilizer::reset() { StabilizerBase::reset(); frameCount_ = 0; isPrePassDone_ = false; doWobbleSuppression_ = false; motions2_.clear(); suppressedFrame_ = Mat(); } Mat TwoPassStabilizer::nextFrame() { runPrePassIfNecessary(); return StabilizerBase::nextStabilizedFrame(); } void TwoPassStabilizer::runPrePassIfNecessary() { if (!isPrePassDone_) { log_->print("first pass: estimating motions"); Mat prevFrame, frame; WobbleSuppressorBase *wobbleSuppressor = static_cast(wobbleSuppressor_); doWobbleSuppression_ = dynamic_cast(wobbleSuppressor) == 0; bool ok = true, ok2 = true; // estimate motions while (!(frame = frameSource_->nextFrame()).empty()) { if (frameCount_ > 0) { motions_.push_back(motionEstimator_->estimate(prevFrame, frame, &ok)); if (doWobbleSuppression_) { Mat M = wobbleSuppressor_->motionEstimator()->estimate(prevFrame, frame, &ok2); if (ok2) motions2_.push_back(M); else motions2_.push_back(motions_.back()); } } else { frameSize_ = frame.size(); frameMask_.create(frameSize_, CV_8U); frameMask_.setTo(255); } prevFrame = frame; frameCount_++; if (ok) { if (ok2) log_->print("."); else log_->print("?"); } else log_->print("x"); } // add aux. motions for (int i = 0; i < radius_; ++i) motions_.push_back(Mat::eye(3, 3, CV_32F)); log_->print("\n"); // stabilize stabilizationMotions_.resize(frameCount_); motionStabilizer_->stabilize( frameCount_, motions_, make_pair(0, frameCount_ - 1), &stabilizationMotions_[0]); // save motions /*ofstream fm("log_motions.csv"); for (int i = 0; i < frameCount_ - 1; ++i) { Mat_ M = at(i, motions_); fm << M(0,0) << " " << M(0,1) << " " << M(0,2) << " " << M(1,0) << " " << M(1,1) << " " << M(1,2) << " " << M(2,0) << " " << M(2,1) << " " << M(2,2) << endl; } ofstream fo("log_orig.csv"); for (int i = 0; i < frameCount_; ++i) { Mat_ M = getMotion(0, i, motions_); fo << M(0,0) << " " << M(0,1) << " " << M(0,2) << " " << M(1,0) << " " << M(1,1) << " " << M(1,2) << " " << M(2,0) << " " << M(2,1) << " " << M(2,2) << endl; } ofstream fs("log_stab.csv"); for (int i = 0; i < frameCount_; ++i) { Mat_ M = stabilizationMotions_[i] * getMotion(0, i, motions_); fs << M(0,0) << " " << M(0,1) << " " << M(0,2) << " " << M(1,0) << " " << M(1,1) << " " << M(1,2) << " " << M(2,0) << " " << M(2,1) << " " << M(2,2) << endl; }*/ // estimate optimal trim ratio if necessary if (mustEstTrimRatio_) { trimRatio_ = 0; for (int i = 0; i < frameCount_; ++i) { Mat S = stabilizationMotions_[i]; trimRatio_ = std::max(trimRatio_, estimateOptimalTrimRatio(S, frameSize_)); } log_->print("estimated trim ratio: %f\n", static_cast(trimRatio_)); } isPrePassDone_ = true; frameSource_->reset(); } } void TwoPassStabilizer::setUp(const Mat &firstFrame) { int cacheSize = 2*radius_ + 1; frames_.resize(cacheSize); stabilizedFrames_.resize(cacheSize); stabilizedMasks_.resize(cacheSize); for (int i = -radius_; i <= 0; ++i) at(i, frames_) = firstFrame; WobbleSuppressorBase *wobbleSuppressor = static_cast(wobbleSuppressor_); doWobbleSuppression_ = dynamic_cast(wobbleSuppressor) == 0; if (doWobbleSuppression_) { wobbleSuppressor_->setFrameCount(frameCount_); wobbleSuppressor_->setMotions(motions_); wobbleSuppressor_->setMotions2(motions2_); wobbleSuppressor_->setStabilizationMotions(stabilizationMotions_); } StabilizerBase::setUp(firstFrame); } Mat TwoPassStabilizer::estimateMotion() { return motions_[curPos_ - 1].clone(); } Mat TwoPassStabilizer::estimateStabilizationMotion() { return stabilizationMotions_[curStabilizedPos_].clone(); } Mat TwoPassStabilizer::postProcessFrame(const Mat &frame) { wobbleSuppressor_->suppress(curStabilizedPos_, frame, suppressedFrame_); return StabilizerBase::postProcessFrame(suppressedFrame_); } } // namespace videostab } // namespace cv