/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Fangfang Bai, fangfang@multicorewareinc.com // Jin Ma, jin@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" ///////////// PyrLKOpticalFlow //////////////////////// PERFTEST(PyrLKOpticalFlow) { std::string images1[] = {"rubberwhale1.png", "basketball1.png"}; std::string images2[] = {"rubberwhale2.png", "basketball2.png"}; for (size_t i = 0; i < sizeof(images1) / sizeof(std::string); i++) { Mat frame0 = imread(abspath(images1[i]), i == 0 ? IMREAD_COLOR : IMREAD_GRAYSCALE); if (frame0.empty()) { std::string errstr = "can't open " + images1[i]; throw runtime_error(errstr); } Mat frame1 = imread(abspath(images2[i]), i == 0 ? IMREAD_COLOR : IMREAD_GRAYSCALE); if (frame1.empty()) { std::string errstr = "can't open " + images2[i]; throw runtime_error(errstr); } Mat gray_frame; if (i == 0) { cvtColor(frame0, gray_frame, COLOR_BGR2GRAY); } for (int points = Min_Size; points <= Max_Size; points *= Multiple) { if (i == 0) SUBTEST << frame0.cols << "x" << frame0.rows << "; color; " << points << " points"; else SUBTEST << frame0.cols << "x" << frame0.rows << "; gray; " << points << " points"; Mat ocl_nextPts; Mat ocl_status; vector pts; goodFeaturesToTrack(i == 0 ? gray_frame : frame0, pts, points, 0.01, 0.0); vector nextPts; vector status; vector err; calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err); CPU_ON; calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err); CPU_OFF; ocl::PyrLKOpticalFlow d_pyrLK; ocl::oclMat d_frame0(frame0); ocl::oclMat d_frame1(frame1); ocl::oclMat d_pts; Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void *)&pts[0]); d_pts.upload(pts_mat); ocl::oclMat d_nextPts; ocl::oclMat d_status; ocl::oclMat d_err; WARMUP_ON; d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err); WARMUP_OFF; GPU_ON; d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err); GPU_OFF; GPU_FULL_ON; d_frame0.upload(frame0); d_frame1.upload(frame1); d_pts.upload(pts_mat); d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err); if (!d_nextPts.empty()) d_nextPts.download(ocl_nextPts); if (!d_status.empty()) d_status.download(ocl_status); GPU_FULL_OFF; size_t mismatch = 0; for (int i = 0; i < (int)nextPts.size(); ++i) { if(status[i] != ocl_status.at(0, i)){ mismatch++; continue; } if(status[i]){ Point2f gpu_rst = ocl_nextPts.at(0, i); Point2f cpu_rst = nextPts[i]; if(fabs(gpu_rst.x - cpu_rst.x) >= 1. || fabs(gpu_rst.y - cpu_rst.y) >= 1.) mismatch++; } } double ratio = (double)mismatch / (double)nextPts.size(); if(ratio < .02) TestSystem::instance().setAccurate(1, ratio); else TestSystem::instance().setAccurate(0, ratio); } } } PERFTEST(tvl1flow) { cv::Mat frame0 = imread("rubberwhale1.png", cv::IMREAD_GRAYSCALE); assert(!frame0.empty()); cv::Mat frame1 = imread("rubberwhale2.png", cv::IMREAD_GRAYSCALE); assert(!frame1.empty()); cv::ocl::OpticalFlowDual_TVL1_OCL d_alg; cv::ocl::oclMat d_flowx(frame0.size(), CV_32FC1); cv::ocl::oclMat d_flowy(frame1.size(), CV_32FC1); cv::Ptr alg = cv::createOptFlow_DualTVL1(); cv::Mat flow; SUBTEST << frame0.cols << 'x' << frame0.rows << "; rubberwhale1.png; "<calc(frame0, frame1, flow); CPU_ON; alg->calc(frame0, frame1, flow); CPU_OFF; cv::Mat gold[2]; cv::split(flow, gold); cv::ocl::oclMat d0(frame0.size(), CV_32FC1); d0.upload(frame0); cv::ocl::oclMat d1(frame1.size(), CV_32FC1); d1.upload(frame1); WARMUP_ON; d_alg(d0, d1, d_flowx, d_flowy); WARMUP_OFF; /* double diff1 = 0.0, diff2 = 0.0; if(ExceptedMatSimilar(gold[0], cv::Mat(d_flowx), 3e-3, diff1) == 1 &&ExceptedMatSimilar(gold[1], cv::Mat(d_flowy), 3e-3, diff2) == 1) TestSystem::instance().setAccurate(1); else TestSystem::instance().setAccurate(0); TestSystem::instance().setDiff(diff1); TestSystem::instance().setDiff(diff2); */ GPU_ON; d_alg(d0, d1, d_flowx, d_flowy); d_alg.collectGarbage(); GPU_OFF; cv::Mat flowx, flowy; GPU_FULL_ON; d0.upload(frame0); d1.upload(frame1); d_alg(d0, d1, d_flowx, d_flowy); d_alg.collectGarbage(); d_flowx.download(flowx); d_flowy.download(flowy); GPU_FULL_OFF; TestSystem::instance().ExceptedMatSimilar(gold[0], flowx, 3e-3); TestSystem::instance().ExceptedMatSimilar(gold[1], flowy, 3e-3); } ///////////// FarnebackOpticalFlow //////////////////////// PERFTEST(FarnebackOpticalFlow) { cv::Mat frame0 = imread("rubberwhale1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = imread("rubberwhale2.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); cv::ocl::oclMat d_frame0(frame0), d_frame1(frame1); int polyNs[2] = { 5, 7 }; double polySigmas[2] = { 1.1, 1.5 }; int farneFlags[2] = { 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN }; bool UseInitFlows[2] = { false, true }; double pyrScale = 0.5; string farneFlagStrs[2] = { "BoxFilter", "GaussianBlur" }; string useInitFlowStrs[2] = { "", "UseInitFlow" }; for ( int i = 0; i < 2; ++i) { int polyN = polyNs[i]; double polySigma = polySigmas[i]; for ( int j = 0; j < 2; ++j) { int flags = farneFlags[j]; for ( int k = 0; k < 2; ++k) { bool useInitFlow = UseInitFlows[k]; SUBTEST << "polyN(" << polyN << "); " << farneFlagStrs[j] << "; " << useInitFlowStrs[k]; cv::ocl::FarnebackOpticalFlow farn; farn.pyrScale = pyrScale; farn.polyN = polyN; farn.polySigma = polySigma; farn.flags = flags; cv::ocl::oclMat d_flowx, d_flowy; cv::Mat flow, flowBuf, flowxBuf, flowyBuf; WARMUP_ON; farn(d_frame0, d_frame1, d_flowx, d_flowy); if (useInitFlow) { cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)}; cv::merge(flowxy, 2, flow); flow.copyTo(flowBuf); flowxy[0].copyTo(flowxBuf); flowxy[1].copyTo(flowyBuf); farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW; farn(d_frame0, d_frame1, d_flowx, d_flowy); } WARMUP_OFF; cv::calcOpticalFlowFarneback( frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize, farn.numIters, farn.polyN, farn.polySigma, farn.flags); std::vector flowxy; cv::split(flow, flowxy); double diff0 = 0.0; TestSystem::instance().setAccurate(ExceptedMatSimilar(flowxy[0], cv::Mat(d_flowx), 0.1, diff0)); TestSystem::instance().setDiff(diff0); double diff1 = 0.0; TestSystem::instance().setAccurate(ExceptedMatSimilar(flowxy[1], cv::Mat(d_flowy), 0.1, diff1)); TestSystem::instance().setDiff(diff1); if (useInitFlow) { cv::Mat flowx, flowy; farn.flags = (flags | cv::OPTFLOW_USE_INITIAL_FLOW); CPU_ON; cv::calcOpticalFlowFarneback( frame0, frame1, flowBuf, farn.pyrScale, farn.numLevels, farn.winSize, farn.numIters, farn.polyN, farn.polySigma, farn.flags); CPU_OFF; GPU_ON; farn(d_frame0, d_frame1, d_flowx, d_flowy); GPU_OFF; GPU_FULL_ON; d_frame0.upload(frame0); d_frame1.upload(frame1); d_flowx.upload(flowxBuf); d_flowy.upload(flowyBuf); farn(d_frame0, d_frame1, d_flowx, d_flowy); d_flowx.download(flowx); d_flowy.download(flowy); GPU_FULL_OFF; } else { cv::Mat flow, flowx, flowy; cv::ocl::oclMat d_flowx, d_flowy; farn.flags = flags; CPU_ON; cv::calcOpticalFlowFarneback( frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize, farn.numIters, farn.polyN, farn.polySigma, farn.flags); CPU_OFF; GPU_ON; farn(d_frame0, d_frame1, d_flowx, d_flowy); GPU_OFF; GPU_FULL_ON; d_frame0.upload(frame0); d_frame1.upload(frame1); farn(d_frame0, d_frame1, d_flowx, d_flowy); d_flowx.download(flowx); d_flowy.download(flowy); GPU_FULL_OFF; } } } } }