// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #ifndef OPENCV_DNN_NMS_INL_HPP #define OPENCV_DNN_NMS_INL_HPP #include namespace cv { namespace dnn { namespace { template static inline bool SortScorePairDescend(const std::pair& pair1, const std::pair& pair2) { return pair1.first > pair2.first; } } // namespace // Get max scores with corresponding indices. // scores: a set of scores. // threshold: only consider scores higher than the threshold. // top_k: if -1, keep all; otherwise, keep at most top_k. // score_index_vec: store the sorted (score, index) pair. inline void GetMaxScoreIndex(const std::vector& scores, const float threshold, const int top_k, std::vector >& score_index_vec) { CV_DbgAssert(score_index_vec.empty()); // Generate index score pairs. for (size_t i = 0; i < scores.size(); ++i) { if (scores[i] > threshold) { score_index_vec.push_back(std::make_pair(scores[i], i)); } } // Sort the score pair according to the scores in descending order std::stable_sort(score_index_vec.begin(), score_index_vec.end(), SortScorePairDescend); // Keep top_k scores if needed. if (top_k > 0 && top_k < (int)score_index_vec.size()) { score_index_vec.resize(top_k); } } // Do non maximum suppression given bboxes and scores. // Inspired by Piotr Dollar's NMS implementation in EdgeBox. // https://goo.gl/jV3JYS // bboxes: a set of bounding boxes. // scores: a set of corresponding confidences. // score_threshold: a threshold used to filter detection results. // nms_threshold: a threshold used in non maximum suppression. // top_k: if not > 0, keep at most top_k picked indices. // indices: the kept indices of bboxes after nms. template inline void NMSFast_(const std::vector& bboxes, const std::vector& scores, const float score_threshold, const float nms_threshold, const float eta, const int top_k, std::vector& indices, float (*computeOverlap)(const BoxType&, const BoxType&)) { CV_Assert(bboxes.size() == scores.size()); // Get top_k scores (with corresponding indices). std::vector > score_index_vec; GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec); // Do nms. float adaptive_threshold = nms_threshold; indices.clear(); for (size_t i = 0; i < score_index_vec.size(); ++i) { const int idx = score_index_vec[i].second; bool keep = true; for (int k = 0; k < (int)indices.size() && keep; ++k) { const int kept_idx = indices[k]; float overlap = computeOverlap(bboxes[idx], bboxes[kept_idx]); keep = overlap <= adaptive_threshold; } if (keep) indices.push_back(idx); if (keep && eta < 1 && adaptive_threshold > 0.5) { adaptive_threshold *= eta; } } } }// dnn }// cv #endif