#!/usr/bin/env python ''' face detection using haar cascades USAGE: facedetect.py [--cascade ] [--nested-cascade ] [] ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv # local modules from video import create_capture from common import clock, draw_str def detect(img, cascade): rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), flags=cv.CASCADE_SCALE_IMAGE) if len(rects) == 0: return [] rects[:,2:] += rects[:,:2] return rects def draw_rects(img, rects, color): for x1, y1, x2, y2 in rects: cv.rectangle(img, (x1, y1), (x2, y2), color, 2) def main(): import sys, getopt args, video_src = getopt.getopt(sys.argv[1:], '', ['cascade=', 'nested-cascade=']) try: video_src = video_src[0] except: video_src = 0 args = dict(args) cascade_fn = args.get('--cascade', "data/haarcascades/haarcascade_frontalface_alt.xml") nested_fn = args.get('--nested-cascade', "data/haarcascades/haarcascade_eye.xml") cascade = cv.CascadeClassifier(cv.samples.findFile(cascade_fn)) nested = cv.CascadeClassifier(cv.samples.findFile(nested_fn)) cam = create_capture(video_src, fallback='synth:bg={}:noise=0.05'.format(cv.samples.findFile('samples/data/lena.jpg'))) while True: _ret, img = cam.read() gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) gray = cv.equalizeHist(gray) t = clock() rects = detect(gray, cascade) vis = img.copy() draw_rects(vis, rects, (0, 255, 0)) if not nested.empty(): for x1, y1, x2, y2 in rects: roi = gray[y1:y2, x1:x2] vis_roi = vis[y1:y2, x1:x2] subrects = detect(roi.copy(), nested) draw_rects(vis_roi, subrects, (255, 0, 0)) dt = clock() - t draw_str(vis, (20, 20), 'time: %.1f ms' % (dt*1000)) cv.imshow('facedetect', vis) if cv.waitKey(5) == 27: break print('Done') if __name__ == '__main__': print(__doc__) main() cv.destroyAllWindows()