#include "clapack.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int sgebd2_(integer *m, integer *n, real *a, integer *lda, real *d__, real *e, real *tauq, real *taup, real *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__; extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *, integer *, real *, real *, integer *, real *), xerbla_( char *, integer *), slarfg_(integer *, real *, real *, integer *, real *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGEBD2 reduces a real general m by n matrix A to upper or lower */ /* bidiagonal form B by an orthogonal transformation: Q' * A * P = B. */ /* If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows in the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns in the matrix A. N >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the m by n general matrix to be reduced. */ /* On exit, */ /* if m >= n, the diagonal and the first superdiagonal are */ /* overwritten with the upper bidiagonal matrix B; the */ /* elements below the diagonal, with the array TAUQ, represent */ /* the orthogonal matrix Q as a product of elementary */ /* reflectors, and the elements above the first superdiagonal, */ /* with the array TAUP, represent the orthogonal matrix P as */ /* a product of elementary reflectors; */ /* if m < n, the diagonal and the first subdiagonal are */ /* overwritten with the lower bidiagonal matrix B; the */ /* elements below the first subdiagonal, with the array TAUQ, */ /* represent the orthogonal matrix Q as a product of */ /* elementary reflectors, and the elements above the diagonal, */ /* with the array TAUP, represent the orthogonal matrix P as */ /* a product of elementary reflectors. */ /* See Further Details. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* D (output) REAL array, dimension (min(M,N)) */ /* The diagonal elements of the bidiagonal matrix B: */ /* D(i) = A(i,i). */ /* E (output) REAL array, dimension (min(M,N)-1) */ /* The off-diagonal elements of the bidiagonal matrix B: */ /* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */ /* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */ /* TAUQ (output) REAL array dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors which */ /* represent the orthogonal matrix Q. See Further Details. */ /* TAUP (output) REAL array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors which */ /* represent the orthogonal matrix P. See Further Details. */ /* WORK (workspace) REAL array, dimension (max(M,N)) */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* The matrices Q and P are represented as products of elementary */ /* reflectors: */ /* If m >= n, */ /* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) */ /* Each H(i) and G(i) has the form: */ /* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */ /* where tauq and taup are real scalars, and v and u are real vectors; */ /* v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */ /* u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */ /* tauq is stored in TAUQ(i) and taup in TAUP(i). */ /* If m < n, */ /* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) */ /* Each H(i) and G(i) has the form: */ /* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */ /* where tauq and taup are real scalars, and v and u are real vectors; */ /* v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */ /* u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */ /* tauq is stored in TAUQ(i) and taup in TAUP(i). */ /* The contents of A on exit are illustrated by the following examples: */ /* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */ /* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) */ /* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) */ /* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) */ /* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) */ /* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) */ /* ( v1 v2 v3 v4 v5 ) */ /* where d and e denote diagonal and off-diagonal elements of B, vi */ /* denotes an element of the vector defining H(i), and ui an element of */ /* the vector defining G(i). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; --tauq; --taup; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info < 0) { i__1 = -(*info); xerbla_("SGEBD2", &i__1); return 0; } if (*m >= *n) { /* Reduce to upper bidiagonal form */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */ i__2 = *m - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ * a_dim1], &c__1, &tauq[i__]); d__[i__] = a[i__ + i__ * a_dim1]; a[i__ + i__ * a_dim1] = 1.f; /* Apply H(i) to A(i:m,i+1:n) from the left */ if (i__ < *n) { i__2 = *m - i__ + 1; i__3 = *n - i__; slarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, & tauq[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1] ); } a[i__ + i__ * a_dim1] = d__[i__]; if (i__ < *n) { /* Generate elementary reflector G(i) to annihilate */ /* A(i,i+2:n) */ i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; slarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min( i__3, *n)* a_dim1], lda, &taup[i__]); e[i__] = a[i__ + (i__ + 1) * a_dim1]; a[i__ + (i__ + 1) * a_dim1] = 1.f; /* Apply G(i) to A(i+1:m,i+1:n) from the right */ i__2 = *m - i__; i__3 = *n - i__; slarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1], lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]); a[i__ + (i__ + 1) * a_dim1] = e[i__]; } else { taup[i__] = 0.f; } /* L10: */ } } else { /* Reduce to lower bidiagonal form */ i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector G(i) to annihilate A(i,i+1:n) */ i__2 = *n - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)* a_dim1], lda, &taup[i__]); d__[i__] = a[i__ + i__ * a_dim1]; a[i__ + i__ * a_dim1] = 1.f; /* Apply G(i) to A(i+1:m,i:n) from the right */ if (i__ < *m) { i__2 = *m - i__; i__3 = *n - i__ + 1; slarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, & taup[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]); } a[i__ + i__ * a_dim1] = d__[i__]; if (i__ < *m) { /* Generate elementary reflector H(i) to annihilate */ /* A(i+2:m,i) */ i__2 = *m - i__; /* Computing MIN */ i__3 = i__ + 2; slarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *m)+ i__ * a_dim1], &c__1, &tauq[i__]); e[i__] = a[i__ + 1 + i__ * a_dim1]; a[i__ + 1 + i__ * a_dim1] = 1.f; /* Apply H(i) to A(i+1:m,i+1:n) from the left */ i__2 = *m - i__; i__3 = *n - i__; slarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], & c__1, &tauq[i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]); a[i__ + 1 + i__ * a_dim1] = e[i__]; } else { tauq[i__] = 0.f; } /* L20: */ } } return 0; /* End of SGEBD2 */ } /* sgebd2_ */