// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Copyright (C) 2016, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. /* Sample of using OpenCV dnn module with Tensorflow Inception model. */ #include #include #include using namespace cv; using namespace cv::dnn; #include #include #include using namespace std; const String keys = "{help h || Sample app for loading Inception TensorFlow model. " "The model and class names list can be downloaded here: " "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip }" "{model m |tensorflow_inception_graph.pb| path to TensorFlow .pb model file }" "{image i || path to image file }" "{i_blob | input | input blob name) }" "{o_blob | softmax2 | output blob name) }" "{c_names c | imagenet_comp_graph_label_strings.txt | path to file with classnames for class id }" "{result r || path to save output blob (optional, binary format, NCHW order) }" ; void getMaxClass(const Mat &probBlob, int *classId, double *classProb); std::vector readClassNames(const char *filename); int main(int argc, char **argv) { cv::CommandLineParser parser(argc, argv, keys); if (parser.has("help")) { parser.printMessage(); return 0; } String modelFile = parser.get("model"); String imageFile = parser.get("image"); String inBlobName = parser.get("i_blob"); String outBlobName = parser.get("o_blob"); if (!parser.check()) { parser.printErrors(); return 0; } String classNamesFile = parser.get("c_names"); String resultFile = parser.get("result"); //! [Initialize network] dnn::Net net = readNetFromTensorflow(modelFile); //! [Initialize network] if (net.empty()) { std::cerr << "Can't load network by using the mode file: " << std::endl; std::cerr << modelFile << std::endl; exit(-1); } //! [Prepare blob] Mat img = imread(imageFile); if (img.empty()) { std::cerr << "Can't read image from the file: " << imageFile << std::endl; exit(-1); } Mat inputBlob = blobFromImage(img, 1.0f, Size(224, 224), Scalar(), true, false); //Convert Mat to batch of images //! [Prepare blob] inputBlob -= 117.0; //! [Set input blob] net.setInput(inputBlob, inBlobName); //set the network input //! [Set input blob] cv::TickMeter tm; tm.start(); //! [Make forward pass] Mat result = net.forward(outBlobName); //compute output //! [Make forward pass] tm.stop(); if (!resultFile.empty()) { CV_Assert(result.isContinuous()); ofstream fout(resultFile.c_str(), ios::out | ios::binary); fout.write((char*)result.data, result.total() * sizeof(float)); fout.close(); } std::cout << "Output blob shape " << result.size[0] << " x " << result.size[1] << " x " << result.size[2] << " x " << result.size[3] << std::endl; std::cout << "Inference time, ms: " << tm.getTimeMilli() << std::endl; if (!classNamesFile.empty()) { std::vector classNames = readClassNames(classNamesFile.c_str()); int classId; double classProb; getMaxClass(result, &classId, &classProb);//find the best class //! [Print results] std::cout << "Best class: #" << classId << " '" << classNames.at(classId) << "'" << std::endl; std::cout << "Probability: " << classProb * 100 << "%" << std::endl; } return 0; } //main /* Find best class for the blob (i. e. class with maximal probability) */ void getMaxClass(const Mat &probBlob, int *classId, double *classProb) { Mat probMat = probBlob.reshape(1, 1); //reshape the blob to 1x1000 matrix Point classNumber; minMaxLoc(probMat, NULL, classProb, NULL, &classNumber); *classId = classNumber.x; } std::vector readClassNames(const char *filename) { std::vector classNames; std::ifstream fp(filename); if (!fp.is_open()) { std::cerr << "File with classes labels not found: " << filename << std::endl; exit(-1); } std::string name; while (!fp.eof()) { std::getline(fp, name); if (name.length()) classNames.push_back( name ); } fp.close(); return classNames; }