import numpy as np import argparse import cv2 as cv try: import cv2 as cv except ImportError: raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, ' 'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)') from cv2 import dnn inWidth = 300 inHeight = 300 confThreshold = 0.5 prototxt = 'face_detector/deploy.prototxt' caffemodel = 'face_detector/res10_300x300_ssd_iter_140000.caffemodel' if __name__ == '__main__': net = dnn.readNetFromCaffe(prototxt, caffemodel) cap = cv.VideoCapture(0) while True: ret, frame = cap.read() cols = frame.shape[1] rows = frame.shape[0] net.setInput(dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (104.0, 177.0, 123.0), False, False)) detections = net.forward() perf_stats = net.getPerfProfile() print('Inference time, ms: %.2f' % (perf_stats[0] / cv.getTickFrequency() * 1000)) for i in range(detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > confThreshold: xLeftBottom = int(detections[0, 0, i, 3] * cols) yLeftBottom = int(detections[0, 0, i, 4] * rows) xRightTop = int(detections[0, 0, i, 5] * cols) yRightTop = int(detections[0, 0, i, 6] * rows) cv.rectangle(frame, (xLeftBottom, yLeftBottom), (xRightTop, yRightTop), (0, 255, 0)) label = "face: %.4f" % confidence labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1) cv.rectangle(frame, (xLeftBottom, yLeftBottom - labelSize[1]), (xLeftBottom + labelSize[0], yLeftBottom + baseLine), (255, 255, 255), cv.FILLED) cv.putText(frame, label, (xLeftBottom, yLeftBottom), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) cv.imshow("detections", frame) if cv.waitKey(1) != -1: break