#ifndef _OPENCV_BOOST_H_ #define _OPENCV_BOOST_H_ #include "traincascade_features.h" #include "old_ml.hpp" struct CvCascadeBoostParams : CvBoostParams { float minHitRate; float maxFalseAlarm; CvCascadeBoostParams(); CvCascadeBoostParams( int _boostType, float _minHitRate, float _maxFalseAlarm, double _weightTrimRate, int _maxDepth, int _maxWeakCount ); virtual ~CvCascadeBoostParams() {} void write( cv::FileStorage &fs ) const; bool read( const cv::FileNode &node ); virtual void printDefaults() const; virtual void printAttrs() const; virtual bool scanAttr( const std::string prmName, const std::string val); }; struct CvCascadeBoostTrainData : CvDTreeTrainData { CvCascadeBoostTrainData( const CvFeatureEvaluator* _featureEvaluator, const CvDTreeParams& _params ); CvCascadeBoostTrainData( const CvFeatureEvaluator* _featureEvaluator, int _numSamples, int _precalcValBufSize, int _precalcIdxBufSize, const CvDTreeParams& _params = CvDTreeParams() ); virtual void setData( const CvFeatureEvaluator* _featureEvaluator, int _numSamples, int _precalcValBufSize, int _precalcIdxBufSize, const CvDTreeParams& _params=CvDTreeParams() ); void precalculate(); virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx ); virtual const int* get_class_labels( CvDTreeNode* n, int* labelsBuf ); virtual const int* get_cv_labels( CvDTreeNode* n, int* labelsBuf); virtual const int* get_sample_indices( CvDTreeNode* n, int* indicesBuf ); virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ordValuesBuf, int* sortedIndicesBuf, const float** ordValues, const int** sortedIndices, int* sampleIndicesBuf ); virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* catValuesBuf ); virtual float getVarValue( int vi, int si ); virtual void free_train_data(); const CvFeatureEvaluator* featureEvaluator; cv::Mat valCache; // precalculated feature values (CV_32FC1) CvMat _resp; // for casting int numPrecalcVal, numPrecalcIdx; }; class CvCascadeBoostTree : public CvBoostTree { public: virtual CvDTreeNode* predict( int sampleIdx ) const; void write( cv::FileStorage &fs, const cv::Mat& featureMap ); void read( const cv::FileNode &node, CvBoost* _ensemble, CvDTreeTrainData* _data ); void markFeaturesInMap( cv::Mat& featureMap ); protected: virtual void split_node_data( CvDTreeNode* n ); }; class CvCascadeBoost : public CvBoost { public: virtual bool train( const CvFeatureEvaluator* _featureEvaluator, int _numSamples, int _precalcValBufSize, int _precalcIdxBufSize, const CvCascadeBoostParams& _params=CvCascadeBoostParams() ); virtual float predict( int sampleIdx, bool returnSum = false ) const; float getThreshold() const { return threshold; } void write( cv::FileStorage &fs, const cv::Mat& featureMap ) const; bool read( const cv::FileNode &node, const CvFeatureEvaluator* _featureEvaluator, const CvCascadeBoostParams& _params ); void markUsedFeaturesInMap( cv::Mat& featureMap ); protected: virtual bool set_params( const CvBoostParams& _params ); virtual void update_weights( CvBoostTree* tree ); virtual bool isErrDesired(); float threshold; float minHitRate, maxFalseAlarm; }; #endif