/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/features2d/features2d.hpp" #include #include #include #include #include #include #include using namespace std; using namespace cv; /* The algorithm: for each tested combination of detector+descriptor+matcher: create detector, descriptor and matcher, load their params if they are there, otherwise use the default ones and save them for each dataset: load reference image detect keypoints in it, compute descriptors for each transformed image: load the image load the transformation matrix detect keypoints in it too, compute descriptors find matches transform keypoints from the first image using the ground-truth matrix compute the number of matched keypoints, i.e. for each pair (i,j) found by a matcher compare j-th keypoint from the second image with the transformed i-th keypoint. If they are close, +1. so, we have: N - number of keypoints in the first image that are also visible (after transformation) on the second image N1 - number of keypoints in the first image that have been matched. n - number of the correct matches found by the matcher n/N1 - precision n/N - recall (?) we store (N, n/N1, n/N) (where N is stored primarily for tuning the detector's thresholds, in order to semi-equalize their keypoints counts) */ typedef Vec3f TVec; // (N, n/N1, n/N) - see above static void saveloadDDM( const string& params_filename, Ptr& detector, Ptr& descriptor, Ptr& matcher ) { FileStorage fs(params_filename, FileStorage::READ); if( fs.isOpened() ) { detector->read(fs["detector"]); descriptor->read(fs["descriptor"]); matcher->read(fs["matcher"]); } else { fs.open(params_filename, FileStorage::WRITE); fs << "detector" << "{"; detector->write(fs); fs << "}" << "descriptor" << "{"; descriptor->write(fs); fs << "}" << "matcher" << "{"; matcher->write(fs); fs << "}"; } } static Mat loadMat(const string& fsname) { FileStorage fs(fsname, FileStorage::READ); Mat m; fs.getFirstTopLevelNode() >> m; return m; } static void transformKeypoints( const vector& kp, vector >& contours, const Mat& H ) { const float scale = 256.f; size_t i, n = kp.size(); contours.resize(n); vector temp; for( i = 0; i < n; i++ ) { ellipse2Poly(Point2f(kp[i].pt.x*scale, kp[i].pt.y*scale), Size2f(kp[i].size*scale, kp[i].size*scale), 0, 0, 360, 12, temp); Mat(temp).convertTo(contours[i], CV_32F, 1./scale); perspectiveTransform(contours[i], contours[i], H); } } static TVec proccessMatches( Size imgsize, const vector& matches, const vector >& kp1t_contours, const vector >& kp_contours, double overlapThreshold ) { const double visibilityThreshold = 0.6; // 1. [preprocessing] find bounding rect for each element of kp1t_contours and kp_contours. // 2. [cross-check] for each DMatch (iK, i1) // update best_match[i1] using DMatch::distance. // 3. [compute overlapping] for each i1 (keypoint from the first image) do: // if i1-th keypoint is outside of image, skip it // increment N // if best_match[i1] is initialized, increment N1 // if kp_contours[best_match[i1]] and kp1t_contours[i1] overlap by overlapThreshold*100%, // increment n. Use bounding rects to speedup this step int i, size1 = (int)kp1t_contours.size(), size = (int)kp_contours.size(), msize = (int)matches.size(); vector best_match(size1); vector rects1(size1), rects(size); // proprocess for( i = 0; i < size1; i++ ) rects1[i] = boundingRect(kp1t_contours[i]); for( i = 0; i < size; i++ ) rects[i] = boundingRect(kp_contours[i]); // cross-check for( i = 0; i < msize; i++ ) { DMatch m = matches[i]; int i1 = m.trainIdx, iK = m.queryIdx; CV_Assert( 0 <= i1 && i1 < size1 && 0 <= iK && iK < size ); if( best_match[i1].trainIdx < 0 || best_match[i1].distance > m.distance ) best_match[i1] = m; } int N = 0, N1 = 0, n = 0; // overlapping for( i = 0; i < size1; i++ ) { int i1 = i, iK = best_match[i].queryIdx; if( iK >= 0 ) N1++; Rect r = rects1[i] & Rect(0, 0, imgsize.width, imgsize.height); if( r.area() < visibilityThreshold*rects1[i].area() ) continue; N++; if( iK < 0 || (rects1[i1] & rects[iK]).area() == 0 ) continue; double n_area = intersectConvexConvex(kp1t_contours[i1], kp_contours[iK], noArray(), true); if( n_area == 0 ) continue; double area1 = contourArea(kp1t_contours[i1], false); double area = contourArea(kp_contours[iK], false); double ratio = n_area/(area1 + area - n_area); n += ratio >= overlapThreshold; } return TVec((float)N, (float)n/std::max(N1, 1), (float)n/std::max(N, 1)); } static void saveResults(const string& dir, const string& name, const string& dsname, const vector& results, const int* xvals) { string fname1 = format("%s%s_%s_precision.csv", dir.c_str(), name.c_str(), dsname.c_str()); string fname2 = format("%s%s_%s_recall.csv", dir.c_str(), name.c_str(), dsname.c_str()); FILE* f1 = fopen(fname1.c_str(), "wt"); FILE* f2 = fopen(fname2.c_str(), "wt"); for( size_t i = 0; i < results.size(); i++ ) { fprintf(f1, "%d, %.1f\n", xvals[i], results[i][1]*100); fprintf(f2, "%d, %.1f\n", xvals[i], results[i][2]*100); } fclose(f1); fclose(f2); } int main(int argc, char** argv) { static const char* ddms[] = { "ORBX_BF", "ORB", "ORB", "BruteForce-Hamming", //"ORB_BF", "ORB", "ORB", "BruteForce-Hamming", //"ORB3_BF", "ORB", "ORB", "BruteForce-Hamming(2)", //"ORB4_BF", "ORB", "ORB", "BruteForce-Hamming(2)", //"ORB_LSH", "ORB", "ORB", "LSH" //"SURF_BF", "SURF", "SURF", "BruteForce", 0 }; static const char* datasets[] = { "bark", "bikes", "boat", "graf", "leuven", "trees", "ubc", "wall", 0 }; static const int imgXVals[] = { 2, 3, 4, 5, 6 }; // if scale, blur or light changes static const int viewpointXVals[] = { 20, 30, 40, 50, 60 }; // if viewpoint changes static const int jpegXVals[] = { 60, 80, 90, 95, 98 }; // if jpeg compression const double overlapThreshold = 0.6; vector > > results; // indexed as results[ddm][dataset][testcase] string dataset_dir = string(getenv("OPENCV_TEST_DATA_PATH")) + "/cv/detectors_descriptors_evaluation/images_datasets"; string dir=argc > 1 ? argv[1] : "."; if( dir[dir.size()-1] != '\\' && dir[dir.size()-1] != '/' ) dir += "/"; system(("mkdir " + dir).c_str()); for( int i = 0; ddms[i*4] != 0; i++ ) { const char* name = ddms[i*4]; const char* detector_name = ddms[i*4+1]; const char* descriptor_name = ddms[i*4+2]; const char* matcher_name = ddms[i*4+3]; string params_filename = dir + string(name) + "_params.yml"; cout << "Testing " << name << endl; Ptr detector = FeatureDetector::create(detector_name); Ptr descriptor = DescriptorExtractor::create(descriptor_name); Ptr matcher = DescriptorMatcher::create(matcher_name); saveloadDDM( params_filename, detector, descriptor, matcher ); results.push_back(vector >()); for( int j = 0; datasets[j] != 0; j++ ) { const char* dsname = datasets[j]; cout << "\ton " << dsname << " "; cout.flush(); const int* xvals = strcmp(dsname, "ubc") == 0 ? jpegXVals : strcmp(dsname, "graf") == 0 || strcmp(dsname, "wall") == 0 ? viewpointXVals : imgXVals; vector kp1, kp; vector matches; vector > kp1t_contours, kp_contours; Mat desc1, desc; Mat img1 = imread(format("%s/%s/img1.png", dataset_dir.c_str(), dsname), 0); CV_Assert( !img1.empty() ); detector->detect(img1, kp1); descriptor->compute(img1, kp1, desc1); results[i].push_back(vector()); for( int k = 2; ; k++ ) { cout << "."; cout.flush(); Mat imgK = imread(format("%s/%s/img%d.png", dataset_dir.c_str(), dsname, k), 0); if( imgK.empty() ) break; detector->detect(imgK, kp); descriptor->compute(imgK, kp, desc); matcher->match( desc, desc1, matches ); Mat H = loadMat(format("%s/%s/H1to%dp.xml", dataset_dir.c_str(), dsname, k)); transformKeypoints( kp1, kp1t_contours, H ); transformKeypoints( kp, kp_contours, Mat::eye(3, 3, CV_64F)); TVec r = proccessMatches( imgK.size(), matches, kp1t_contours, kp_contours, overlapThreshold ); results[i][j].push_back(r); } saveResults(dir, name, dsname, results[i][j], xvals); cout << endl; } } }