/* * stereo_match.cpp * calibration * * Created by Victor Eruhimov on 1/18/10. * Copyright 2010 Argus Corp. All rights reserved. * */ #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/highgui.hpp" #include "opencv2/core/utility.hpp" #include using namespace cv; static void print_help() { printf("\nDemo stereo matching converting L and R images into disparity and point clouds\n"); printf("\nUsage: stereo_match [--algorithm=bm|sgbm|hh|sgbm3way] [--blocksize=]\n" "[--max-disparity=] [--scale=scale_factor>] [-i=] [-e=]\n" "[--no-display] [-o=] [-p=]\n"); } static void saveXYZ(const char* filename, const Mat& mat) { const double max_z = 1.0e4; FILE* fp = fopen(filename, "wt"); for(int y = 0; y < mat.rows; y++) { for(int x = 0; x < mat.cols; x++) { Vec3f point = mat.at(y, x); if(fabs(point[2] - max_z) < FLT_EPSILON || fabs(point[2]) > max_z) continue; fprintf(fp, "%f %f %f\n", point[0], point[1], point[2]); } } fclose(fp); } int main(int argc, char** argv) { std::string img1_filename = ""; std::string img2_filename = ""; std::string intrinsic_filename = ""; std::string extrinsic_filename = ""; std::string disparity_filename = ""; std::string point_cloud_filename = ""; enum { STEREO_BM=0, STEREO_SGBM=1, STEREO_HH=2, STEREO_VAR=3, STEREO_3WAY=4 }; int alg = STEREO_SGBM; int SADWindowSize, numberOfDisparities; bool no_display; float scale; Ptr bm = StereoBM::create(16,9); Ptr sgbm = StereoSGBM::create(0,16,3); cv::CommandLineParser parser(argc, argv, "{@arg1||}{@arg2||}{help h||}{algorithm||}{max-disparity|0|}{blocksize|0|}{no-display||}{scale|1|}{i||}{e||}{o||}{p||}"); if(parser.has("help")) { print_help(); return 0; } img1_filename = parser.get(0); img2_filename = parser.get(1); if (parser.has("algorithm")) { std::string _alg = parser.get("algorithm"); alg = _alg == "bm" ? STEREO_BM : _alg == "sgbm" ? STEREO_SGBM : _alg == "hh" ? STEREO_HH : _alg == "var" ? STEREO_VAR : _alg == "sgbm3way" ? STEREO_3WAY : -1; } numberOfDisparities = parser.get("max-disparity"); SADWindowSize = parser.get("blocksize"); scale = parser.get("scale"); no_display = parser.has("no-display"); if( parser.has("i") ) intrinsic_filename = parser.get("i"); if( parser.has("e") ) extrinsic_filename = parser.get("e"); if( parser.has("o") ) disparity_filename = parser.get("o"); if( parser.has("p") ) point_cloud_filename = parser.get("p"); if (!parser.check()) { parser.printErrors(); return 1; } if( alg < 0 ) { printf("Command-line parameter error: Unknown stereo algorithm\n\n"); print_help(); return -1; } if ( numberOfDisparities < 1 || numberOfDisparities % 16 != 0 ) { printf("Command-line parameter error: The max disparity (--maxdisparity=<...>) must be a positive integer divisible by 16\n"); print_help(); return -1; } if (scale < 0) { printf("Command-line parameter error: The scale factor (--scale=<...>) must be a positive floating-point number\n"); return -1; } if (SADWindowSize < 1 || SADWindowSize % 2 != 1) { printf("Command-line parameter error: The block size (--blocksize=<...>) must be a positive odd number\n"); return -1; } if( img1_filename.empty() || img2_filename.empty() ) { printf("Command-line parameter error: both left and right images must be specified\n"); return -1; } if( (!intrinsic_filename.empty()) ^ (!extrinsic_filename.empty()) ) { printf("Command-line parameter error: either both intrinsic and extrinsic parameters must be specified, or none of them (when the stereo pair is already rectified)\n"); return -1; } if( extrinsic_filename.empty() && !point_cloud_filename.empty() ) { printf("Command-line parameter error: extrinsic and intrinsic parameters must be specified to compute the point cloud\n"); return -1; } int color_mode = alg == STEREO_BM ? 0 : -1; Mat img1 = imread(img1_filename, color_mode); Mat img2 = imread(img2_filename, color_mode); if (img1.empty()) { printf("Command-line parameter error: could not load the first input image file\n"); return -1; } if (img2.empty()) { printf("Command-line parameter error: could not load the second input image file\n"); return -1; } if (scale != 1.f) { Mat temp1, temp2; int method = scale < 1 ? INTER_AREA : INTER_CUBIC; resize(img1, temp1, Size(), scale, scale, method); img1 = temp1; resize(img2, temp2, Size(), scale, scale, method); img2 = temp2; } Size img_size = img1.size(); Rect roi1, roi2; Mat Q; if( !intrinsic_filename.empty() ) { // reading intrinsic parameters FileStorage fs(intrinsic_filename, FileStorage::READ); if(!fs.isOpened()) { printf("Failed to open file %s\n", intrinsic_filename.c_str()); return -1; } Mat M1, D1, M2, D2; fs["M1"] >> M1; fs["D1"] >> D1; fs["M2"] >> M2; fs["D2"] >> D2; M1 *= scale; M2 *= scale; fs.open(extrinsic_filename, FileStorage::READ); if(!fs.isOpened()) { printf("Failed to open file %s\n", extrinsic_filename.c_str()); return -1; } Mat R, T, R1, P1, R2, P2; fs["R"] >> R; fs["T"] >> T; stereoRectify( M1, D1, M2, D2, img_size, R, T, R1, R2, P1, P2, Q, CALIB_ZERO_DISPARITY, -1, img_size, &roi1, &roi2 ); Mat map11, map12, map21, map22; initUndistortRectifyMap(M1, D1, R1, P1, img_size, CV_16SC2, map11, map12); initUndistortRectifyMap(M2, D2, R2, P2, img_size, CV_16SC2, map21, map22); Mat img1r, img2r; remap(img1, img1r, map11, map12, INTER_LINEAR); remap(img2, img2r, map21, map22, INTER_LINEAR); img1 = img1r; img2 = img2r; } numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparities : ((img_size.width/8) + 15) & -16; bm->setROI1(roi1); bm->setROI2(roi2); bm->setPreFilterCap(31); bm->setBlockSize(SADWindowSize > 0 ? SADWindowSize : 9); bm->setMinDisparity(0); bm->setNumDisparities(numberOfDisparities); bm->setTextureThreshold(10); bm->setUniquenessRatio(15); bm->setSpeckleWindowSize(100); bm->setSpeckleRange(32); bm->setDisp12MaxDiff(1); sgbm->setPreFilterCap(63); int sgbmWinSize = SADWindowSize > 0 ? SADWindowSize : 3; sgbm->setBlockSize(sgbmWinSize); int cn = img1.channels(); sgbm->setP1(8*cn*sgbmWinSize*sgbmWinSize); sgbm->setP2(32*cn*sgbmWinSize*sgbmWinSize); sgbm->setMinDisparity(0); sgbm->setNumDisparities(numberOfDisparities); sgbm->setUniquenessRatio(10); sgbm->setSpeckleWindowSize(100); sgbm->setSpeckleRange(32); sgbm->setDisp12MaxDiff(1); if(alg==STEREO_HH) sgbm->setMode(StereoSGBM::MODE_HH); else if(alg==STEREO_SGBM) sgbm->setMode(StereoSGBM::MODE_SGBM); else if(alg==STEREO_3WAY) sgbm->setMode(StereoSGBM::MODE_SGBM_3WAY); Mat disp, disp8; //Mat img1p, img2p, dispp; //copyMakeBorder(img1, img1p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE); //copyMakeBorder(img2, img2p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE); int64 t = getTickCount(); if( alg == STEREO_BM ) bm->compute(img1, img2, disp); else if( alg == STEREO_SGBM || alg == STEREO_HH || alg == STEREO_3WAY ) sgbm->compute(img1, img2, disp); t = getTickCount() - t; printf("Time elapsed: %fms\n", t*1000/getTickFrequency()); //disp = dispp.colRange(numberOfDisparities, img1p.cols); if( alg != STEREO_VAR ) disp.convertTo(disp8, CV_8U, 255/(numberOfDisparities*16.)); else disp.convertTo(disp8, CV_8U); if( !no_display ) { namedWindow("left", 1); imshow("left", img1); namedWindow("right", 1); imshow("right", img2); namedWindow("disparity", 0); imshow("disparity", disp8); printf("press any key to continue..."); fflush(stdout); waitKey(); printf("\n"); } if(!disparity_filename.empty()) imwrite(disparity_filename, disp8); if(!point_cloud_filename.empty()) { printf("storing the point cloud..."); fflush(stdout); Mat xyz; reprojectImageTo3D(disp, xyz, Q, true); saveXYZ(point_cloud_filename.c_str(), xyz); printf("\n"); } return 0; }