/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Fangfang Bai, fangfang@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #ifdef HAVE_OPENCL using namespace cv; using namespace cv::ocl; using namespace cvtest; using namespace testing; using namespace std; #ifndef MWC_TEST_UTILITY #define MWC_TEST_UTILITY //////// Utility #ifndef DIFFERENT_SIZES #else #undef DIFFERENT_SIZES #endif #define DIFFERENT_SIZES testing::Values(cv::Size(256, 256), cv::Size(3000, 3000)) // Param class #ifndef IMPLEMENT_PARAM_CLASS #define IMPLEMENT_PARAM_CLASS(name, type) \ class name \ { \ public: \ name ( type arg = type ()) : val_(arg) {} \ operator type () const {return val_;} \ private: \ type val_; \ }; \ inline void PrintTo( name param, std::ostream* os) \ { \ *os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \ } IMPLEMENT_PARAM_CLASS(Channels, int) #endif // IMPLEMENT_PARAM_CLASS #endif // MWC_TEST_UTILITY //////////////////////////////////////////////////////////////////////////////// // MatchTemplate #define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF_NORMED)) IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size); const char *TEMPLATE_METHOD_NAMES[6] = {"TM_SQDIFF", "TM_SQDIFF_NORMED", "TM_CCORR", "TM_CCORR_NORMED", "TM_CCOEFF", "TM_CCOEFF_NORMED"}; PARAM_TEST_CASE(MatchTemplate, cv::Size, TemplateSize, Channels, TemplateMethod) { cv::Size size; cv::Size templ_size; int cn; int method; //vector oclinfo; virtual void SetUp() { size = GET_PARAM(0); templ_size = GET_PARAM(1); cn = GET_PARAM(2); method = GET_PARAM(3); //int devnums = getDevice(oclinfo); //CV_Assert(devnums > 0); } }; struct MatchTemplate8U : MatchTemplate {}; TEST_P(MatchTemplate8U, Performance) { std::cout << "Method: " << TEMPLATE_METHOD_NAMES[method] << std::endl; std::cout << "Image Size: (" << size.width << ", " << size.height << ")" << std::endl; std::cout << "Template Size: (" << templ_size.width << ", " << templ_size.height << ")" << std::endl; std::cout << "Channels: " << cn << std::endl; cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn)); cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn)); cv::Mat dst_gold; cv::ocl::oclMat dst; double totalgputick = 0; double totalgputick_kernel = 0; double t1 = 0; double t2 = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { t1 = (double)cvGetTickCount();//gpu start1 cv::ocl::oclMat ocl_image = cv::ocl::oclMat(image);//upload cv::ocl::oclMat ocl_templ = cv::ocl::oclMat(templ);//upload t2 = (double)cvGetTickCount(); //kernel cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_dst; dst.download (cpu_dst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalgputick_kernel = t2 + totalgputick_kernel; } cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } struct MatchTemplate32F : MatchTemplate {}; TEST_P(MatchTemplate32F, Performance) { std::cout << "Method: " << TEMPLATE_METHOD_NAMES[method] << std::endl; std::cout << "Image Size: (" << size.width << ", " << size.height << ")" << std::endl; std::cout << "Template Size: (" << templ_size.width << ", " << templ_size.height << ")" << std::endl; std::cout << "Channels: " << cn << std::endl; cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn)); cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn)); cv::Mat dst_gold; cv::ocl::oclMat dst; double totalgputick = 0; double totalgputick_kernel = 0; double t1 = 0; double t2 = 0; for(int j = 0; j < LOOP_TIMES; j ++) { t1 = (double)cvGetTickCount();//gpu start1 cv::ocl::oclMat ocl_image = cv::ocl::oclMat(image);//upload cv::ocl::oclMat ocl_templ = cv::ocl::oclMat(templ);//upload t2 = (double)cvGetTickCount(); //kernel cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_dst; dst.download (cpu_dst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 totalgputick = t1 + totalgputick; totalgputick_kernel = t2 + totalgputick_kernel; } cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate8U, testing::Combine( testing::Values(cv::Size(1280, 1024), cv::Size(MWIDTH, MHEIGHT), cv::Size(1800, 1500)), testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16))/*, TemplateSize(cv::Size(30, 30))*/), testing::Values(Channels(1), Channels(4)/*, Channels(3)*/), ALL_TEMPLATE_METHODS ) ); INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate32F, testing::Combine( testing::Values(cv::Size(1280, 1024), cv::Size(MWIDTH, MHEIGHT), cv::Size(1800, 1500)), testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16))/*, TemplateSize(cv::Size(30, 30))*/), testing::Values(Channels(1), Channels(4) /*, Channels(3)*/), testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR)))); #endif //HAVE_OPENCL