#include "precomp.hpp" #include "_lsvmparser.h" #include "_lsvm_matching.h" /* // load trained detector from a file // // API // CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename); // INPUT // filename - path to the file containing the parameters of // - trained Latent SVM detector // OUTPUT // trained Latent SVM detector in internal representation */ CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename) { CvLatentSvmDetector* detector = 0; CvLSVMFilterObject** filters = 0; int kFilters = 0; int kComponents = 0; int* kPartFilters = 0; float* b = 0; float scoreThreshold = 0.f; int err_code = 0; err_code = loadModel(filename, &filters, &kFilters, &kComponents, &kPartFilters, &b, &scoreThreshold); if (err_code != LATENT_SVM_OK) return 0; detector = (CvLatentSvmDetector*)malloc(sizeof(CvLatentSvmDetector)); detector->filters = filters; detector->b = b; detector->num_components = kComponents; detector->num_filters = kFilters; detector->num_part_filters = kPartFilters; detector->score_threshold = scoreThreshold; return detector; } /* // release memory allocated for CvLatentSvmDetector structure // // API // void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector); // INPUT // detector - CvLatentSvmDetector structure to be released // OUTPUT */ void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector) { free((*detector)->b); free((*detector)->num_part_filters); for (int i = 0; i < (*detector)->num_filters; i++) { free((*detector)->filters[i]->H); free((*detector)->filters[i]); } free((*detector)->filters); free((*detector)); *detector = 0; } /* // find rectangular regions in the given image that are likely // to contain objects and corresponding confidence levels // // API // CvSeq* cvLatentSvmDetectObjects(const IplImage* image, // CvLatentSvmDetector* detector, // CvMemStorage* storage, // float overlap_threshold = 0.5f, int numThreads = -1); // INPUT // image - image to detect objects in // detector - Latent SVM detector in internal representation // storage - memory storage to store the resultant sequence // of the object candidate rectangles // overlap_threshold - threshold for the non-maximum suppression algorithm [here will be the reference to original paper] // OUTPUT // sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures) */ CvSeq* cvLatentSvmDetectObjects(IplImage* image, CvLatentSvmDetector* detector, CvMemStorage* storage, float overlap_threshold, int numThreads) { CvLSVMFeaturePyramid *H = 0; CvPoint *points = 0, *oppPoints = 0; int kPoints = 0; float *score = 0; unsigned int maxXBorder = 0, maxYBorder = 0; int numBoxesOut = 0; CvPoint *pointsOut = 0; CvPoint *oppPointsOut = 0; float *scoreOut = 0; CvSeq* result_seq = 0; int error = 0; if(image->nChannels == 3) cvCvtColor(image, image, CV_BGR2RGB); // Getting maximum filter dimensions getMaxFilterDims((const CvLSVMFilterObject**)(detector->filters), detector->num_components, detector->num_part_filters, &maxXBorder, &maxYBorder); // Create feature pyramid with nullable border H = createFeaturePyramidWithBorder(image, maxXBorder, maxYBorder); // Search object error = searchObjectThresholdSomeComponents(H, (const CvLSVMFilterObject**)(detector->filters), detector->num_components, detector->num_part_filters, detector->b, detector->score_threshold, &points, &oppPoints, &score, &kPoints, numThreads); if (error != LATENT_SVM_OK) { return NULL; } // Clipping boxes clippingBoxes(image->width, image->height, points, kPoints); clippingBoxes(image->width, image->height, oppPoints, kPoints); // NMS procedure nonMaximumSuppression(kPoints, points, oppPoints, score, overlap_threshold, &numBoxesOut, &pointsOut, &oppPointsOut, &scoreOut); result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvObjectDetection), storage ); for (int i = 0; i < numBoxesOut; i++) { CvObjectDetection detection = {{0, 0, 0, 0}, 0}; detection.score = scoreOut[i]; CvRect bounding_box = {0, 0, 0, 0}; bounding_box.x = pointsOut[i].x; bounding_box.y = pointsOut[i].y; bounding_box.width = oppPointsOut[i].x - pointsOut[i].x; bounding_box.height = oppPointsOut[i].y - pointsOut[i].y; detection.rect = bounding_box; cvSeqPush(result_seq, &detection); } if(image->nChannels == 3) cvCvtColor(image, image, CV_RGB2BGR); freeFeaturePyramidObject(&H); free(points); free(oppPoints); free(score); free(scoreOut); return result_seq; } namespace cv { LatentSvmDetector::ObjectDetection::ObjectDetection() : score(0.f), classID(-1) {} LatentSvmDetector::ObjectDetection::ObjectDetection( const Rect& _rect, float _score, int _classID ) : rect(_rect), score(_score), classID(_classID) {} LatentSvmDetector::LatentSvmDetector() {} LatentSvmDetector::LatentSvmDetector( const vector& filenames, const vector& _classNames ) { load( filenames, _classNames ); } LatentSvmDetector::~LatentSvmDetector() { clear(); } void LatentSvmDetector::clear() { for( size_t i = 0; i < detectors.size(); i++ ) cvReleaseLatentSvmDetector( &detectors[i] ); detectors.clear(); classNames.clear(); } bool LatentSvmDetector::empty() const { return detectors.empty(); } const vector& LatentSvmDetector::getClassNames() const { return classNames; } size_t LatentSvmDetector::getClassCount() const { return classNames.size(); } static string extractModelName( const string& filename ) { size_t startPos = filename.rfind('/'); if( startPos == string::npos ) startPos = filename.rfind('\\'); if( startPos == string::npos ) startPos = 0; else startPos++; const int extentionSize = 4; //.xml int substrLength = (int)(filename.size() - startPos - extentionSize); return filename.substr(startPos, substrLength); } bool LatentSvmDetector::load( const vector& filenames, const vector& _classNames ) { clear(); CV_Assert( _classNames.empty() || _classNames.size() == filenames.size() ); for( size_t i = 0; i < filenames.size(); i++ ) { const string filename = filenames[i]; if( filename.length() < 5 || filename.substr(filename.length()-4, 4) != ".xml" ) continue; CvLatentSvmDetector* detector = cvLoadLatentSvmDetector( filename.c_str() ); if( detector ) { detectors.push_back( detector ); if( _classNames.empty() ) { classNames.push_back( extractModelName(filenames[i]) ); } else classNames.push_back( _classNames[i] ); } } return !empty(); } void LatentSvmDetector::detect( const Mat& image, vector& objectDetections, float overlapThreshold, int numThreads ) { objectDetections.clear(); if( numThreads <= 0 ) numThreads = 1; for( size_t classID = 0; classID < detectors.size(); classID++ ) { IplImage image_ipl = image; CvMemStorage* storage = cvCreateMemStorage(0); CvSeq* detections = cvLatentSvmDetectObjects( &image_ipl, detectors[classID], storage, overlapThreshold, numThreads ); // convert results objectDetections.reserve( objectDetections.size() + detections->total ); for( int detectionIdx = 0; detectionIdx < detections->total; detectionIdx++ ) { CvObjectDetection detection = *(CvObjectDetection*)cvGetSeqElem( detections, detectionIdx ); objectDetections.push_back( ObjectDetection(Rect(detection.rect), detection.score, (int)classID) ); } cvReleaseMemStorage( &storage ); } } } // namespace cv