#include "../perf_precomp.hpp" #include "opencv2/ts/ocl_perf.hpp" #include #ifdef HAVE_OPENCL namespace opencv_test { namespace ocl { using namespace ::perf; namespace { enum {STRIDE_OFF = 1, STRIDE_ON = 2}; CV_ENUM(StrideSize, STRIDE_OFF, STRIDE_ON); enum {GROUP_OFF = 1, GROUP_2 = 2}; CV_ENUM(GroupSize, GROUP_OFF, GROUP_2); } // namespace //Squared Size #define SSZ(n) cv::Size(n, n) typedef std::pair InpShapeNumOut; typedef tuple ConvParam; //kernel_size, inp shape, groups, stride typedef TestBaseWithParam ConvolutionPerfTest; static inline MatShape blobShape(int count, int nplanes, int height, int width) { int data[] = {count, nplanes, height, width}; return MatShape(data, data+4); } OCL_PERF_TEST_P( ConvolutionPerfTest, perf, Combine( Values(Size(1, 1), Size(3, 3), Size(5, 5), Size(11, 11)), Values(make_pair(blobShape(1, 4, 224, 224), 64), make_pair(blobShape(1, 64, 112, 122), 128), make_pair(blobShape(1, 256, 28, 28), 512)), GroupSize::all(), StrideSize::all()) ) { RNG rng(0); ConvParam params = GetParam(); int ksz = get<0>(params).width; MatShape inpShape = get<1>(params).first; int outCn = get<1>(params).second; int groups = get<2>(params); int stride = (ksz >= 11) ? 4 : (int)get<3>(params); int inpCn = inpShape[1]; int wgtSize[] = { outCn, inpCn/groups, ksz, ksz }; int biasSize[] = { outCn, 1, 1, 1 }; const int wtype = CV_32F; Mat wgtBlob(4, wgtSize, wtype), biasBlob(4, biasSize, wtype); Mat inpBlob(4, &inpShape[0], wtype); rng.fill(biasBlob, RNG::UNIFORM, -1, +1); rng.fill(wgtBlob, RNG::UNIFORM, -1, +1); rng.fill(inpBlob, RNG::UNIFORM, -1, +1); LayerParams lp; lp.set("num_output", outCn); lp.set("group", groups); lp.set("stride", stride); lp.set("kernel_size", ksz); lp.blobs.reserve(2); lp.blobs.push_back(wgtBlob); lp.blobs.push_back(biasBlob); std::vector inpBlobs(1, &inpBlob); std::vector outBlobs, internalBlobs; Ptr layer = cv::dnn::LayerFactory::createLayerInstance("Convolution", lp); std::vector inputShapes(1, shape(inpBlob)), outShapes, internals; layer->getMemoryShapes(inputShapes, 0, outShapes, internals); for (size_t i = 0; i < outShapes.size(); i++) { outBlobs.push_back(Mat(outShapes[i], CV_32F)); } for (size_t i = 0; i < internals.size(); i++) { internalBlobs.push_back(Mat()); if (total(internals[i])) internalBlobs.back().create(internals[i], CV_32F); } layer->finalize(inpBlobs, outBlobs); layer->preferableTarget = DNN_TARGET_OPENCL; Mat inpBlob2D = inpBlob.reshape(1, outCn); Mat wgtBlob2D = wgtBlob.reshape(1, outCn*(inpCn/groups)); Mat outBlob2D = outBlobs[0].reshape(1, outBlobs[0].size[0]); declare.in(inpBlob2D, wgtBlob2D, WARMUP_RNG).out(outBlob2D); // warmup layer->forward(inpBlobs, outBlobs, internalBlobs); TEST_CYCLE() { layer->forward(inpBlobs, outBlobs, internalBlobs); } SANITY_CHECK_NOTHING(); } } } #endif