/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef OPENCV_CUDAOPTFLOW_HPP #define OPENCV_CUDAOPTFLOW_HPP #ifndef __cplusplus # error cudaoptflow.hpp header must be compiled as C++ #endif #include "opencv2/core/cuda.hpp" /** @addtogroup cuda @{ @defgroup cudaoptflow Optical Flow @} */ namespace cv { namespace cuda { //! @addtogroup cudaoptflow //! @{ // // Interface // /** @brief Base interface for dense optical flow algorithms. */ class CV_EXPORTS DenseOpticalFlow : public Algorithm { public: /** @brief Calculates a dense optical flow. @param I0 first input image. @param I1 second input image of the same size and the same type as I0. @param flow computed flow image that has the same size as I0 and type CV_32FC2. @param stream Stream for the asynchronous version. */ virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream = Stream::Null()) = 0; }; /** @brief Base interface for sparse optical flow algorithms. */ class CV_EXPORTS SparseOpticalFlow : public Algorithm { public: /** @brief Calculates a sparse optical flow. @param prevImg First input image. @param nextImg Second input image of the same size and the same type as prevImg. @param prevPts Vector of 2D points for which the flow needs to be found. @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image. @param status Output status vector. Each element of the vector is set to 1 if the flow for the corresponding features has been found. Otherwise, it is set to 0. @param err Optional output vector that contains error response for each point (inverse confidence). @param stream Stream for the asynchronous version. */ virtual void calc(InputArray prevImg, InputArray nextImg, InputArray prevPts, InputOutputArray nextPts, OutputArray status, OutputArray err = cv::noArray(), Stream& stream = Stream::Null()) = 0; }; // // BroxOpticalFlow // /** @brief Class computing the optical flow for two images using Brox et al Optical Flow algorithm (@cite Brox2004). */ class CV_EXPORTS BroxOpticalFlow : public DenseOpticalFlow { public: virtual double getFlowSmoothness() const = 0; virtual void setFlowSmoothness(double alpha) = 0; virtual double getGradientConstancyImportance() const = 0; virtual void setGradientConstancyImportance(double gamma) = 0; virtual double getPyramidScaleFactor() const = 0; virtual void setPyramidScaleFactor(double scale_factor) = 0; //! number of lagged non-linearity iterations (inner loop) virtual int getInnerIterations() const = 0; virtual void setInnerIterations(int inner_iterations) = 0; //! number of warping iterations (number of pyramid levels) virtual int getOuterIterations() const = 0; virtual void setOuterIterations(int outer_iterations) = 0; //! number of linear system solver iterations virtual int getSolverIterations() const = 0; virtual void setSolverIterations(int solver_iterations) = 0; static Ptr create( double alpha = 0.197, double gamma = 50.0, double scale_factor = 0.8, int inner_iterations = 5, int outer_iterations = 150, int solver_iterations = 10); }; // // PyrLKOpticalFlow // /** @brief Class used for calculating a sparse optical flow. The class can calculate an optical flow for a sparse feature set using the iterative Lucas-Kanade method with pyramids. @sa calcOpticalFlowPyrLK @note - An example of the Lucas Kanade optical flow algorithm can be found at opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp */ class CV_EXPORTS SparsePyrLKOpticalFlow : public SparseOpticalFlow { public: virtual Size getWinSize() const = 0; virtual void setWinSize(Size winSize) = 0; virtual int getMaxLevel() const = 0; virtual void setMaxLevel(int maxLevel) = 0; virtual int getNumIters() const = 0; virtual void setNumIters(int iters) = 0; virtual bool getUseInitialFlow() const = 0; virtual void setUseInitialFlow(bool useInitialFlow) = 0; static Ptr create( Size winSize = Size(21, 21), int maxLevel = 3, int iters = 30, bool useInitialFlow = false); }; /** @brief Class used for calculating a dense optical flow. The class can calculate an optical flow for a dense optical flow using the iterative Lucas-Kanade method with pyramids. */ class CV_EXPORTS DensePyrLKOpticalFlow : public DenseOpticalFlow { public: virtual Size getWinSize() const = 0; virtual void setWinSize(Size winSize) = 0; virtual int getMaxLevel() const = 0; virtual void setMaxLevel(int maxLevel) = 0; virtual int getNumIters() const = 0; virtual void setNumIters(int iters) = 0; virtual bool getUseInitialFlow() const = 0; virtual void setUseInitialFlow(bool useInitialFlow) = 0; static Ptr create( Size winSize = Size(13, 13), int maxLevel = 3, int iters = 30, bool useInitialFlow = false); }; // // FarnebackOpticalFlow // /** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm. */ class CV_EXPORTS FarnebackOpticalFlow : public DenseOpticalFlow { public: virtual int getNumLevels() const = 0; virtual void setNumLevels(int numLevels) = 0; virtual double getPyrScale() const = 0; virtual void setPyrScale(double pyrScale) = 0; virtual bool getFastPyramids() const = 0; virtual void setFastPyramids(bool fastPyramids) = 0; virtual int getWinSize() const = 0; virtual void setWinSize(int winSize) = 0; virtual int getNumIters() const = 0; virtual void setNumIters(int numIters) = 0; virtual int getPolyN() const = 0; virtual void setPolyN(int polyN) = 0; virtual double getPolySigma() const = 0; virtual void setPolySigma(double polySigma) = 0; virtual int getFlags() const = 0; virtual void setFlags(int flags) = 0; static Ptr create( int numLevels = 5, double pyrScale = 0.5, bool fastPyramids = false, int winSize = 13, int numIters = 10, int polyN = 5, double polySigma = 1.1, int flags = 0); }; // // OpticalFlowDual_TVL1 // /** @brief Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method. * * @sa C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow". * @sa Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation". */ class CV_EXPORTS OpticalFlowDual_TVL1 : public DenseOpticalFlow { public: /** * Time step of the numerical scheme. */ virtual double getTau() const = 0; virtual void setTau(double tau) = 0; /** * Weight parameter for the data term, attachment parameter. * This is the most relevant parameter, which determines the smoothness of the output. * The smaller this parameter is, the smoother the solutions we obtain. * It depends on the range of motions of the images, so its value should be adapted to each image sequence. */ virtual double getLambda() const = 0; virtual void setLambda(double lambda) = 0; /** * Weight parameter for (u - v)^2, tightness parameter. * It serves as a link between the attachment and the regularization terms. * In theory, it should have a small value in order to maintain both parts in correspondence. * The method is stable for a large range of values of this parameter. */ virtual double getGamma() const = 0; virtual void setGamma(double gamma) = 0; /** * parameter used for motion estimation. It adds a variable allowing for illumination variations * Set this parameter to 1. if you have varying illumination. * See: Chambolle et al, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging * Journal of Mathematical imaging and vision, may 2011 Vol 40 issue 1, pp 120-145 */ virtual double getTheta() const = 0; virtual void setTheta(double theta) = 0; /** * Number of scales used to create the pyramid of images. */ virtual int getNumScales() const = 0; virtual void setNumScales(int nscales) = 0; /** * Number of warpings per scale. * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale. * This is a parameter that assures the stability of the method. * It also affects the running time, so it is a compromise between speed and accuracy. */ virtual int getNumWarps() const = 0; virtual void setNumWarps(int warps) = 0; /** * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time. * A small value will yield more accurate solutions at the expense of a slower convergence. */ virtual double getEpsilon() const = 0; virtual void setEpsilon(double epsilon) = 0; /** * Stopping criterion iterations number used in the numerical scheme. */ virtual int getNumIterations() const = 0; virtual void setNumIterations(int iterations) = 0; virtual double getScaleStep() const = 0; virtual void setScaleStep(double scaleStep) = 0; virtual bool getUseInitialFlow() const = 0; virtual void setUseInitialFlow(bool useInitialFlow) = 0; static Ptr create( double tau = 0.25, double lambda = 0.15, double theta = 0.3, int nscales = 5, int warps = 5, double epsilon = 0.01, int iterations = 300, double scaleStep = 0.8, double gamma = 0.0, bool useInitialFlow = false); }; //! @} }} // namespace cv { namespace cuda { #endif /* OPENCV_CUDAOPTFLOW_HPP */