/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ //#include #include "precomp.hpp" namespace cv { /*! The class implements the following algorithm: "Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction" Z.Zivkovic, F. van der Heijden Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006 http://www.zoranz.net/Publications/zivkovicPRL2006.pdf */ // default parameters of gaussian background detection algorithm static const int defaultHistory2 = 500; // Learning rate; alpha = 1/defaultHistory2 static const int defaultNsamples = 7; // number of samples saved in memory static const float defaultDist2Threshold = 20.0f*20.0f;//threshold on distance from the sample // additional parameters static const unsigned char defaultnShadowDetection2 = (unsigned char)127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection static const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation class BackgroundSubtractorKNNImpl : public BackgroundSubtractorKNN { public: //! the default constructor BackgroundSubtractorKNNImpl() { frameSize = Size(0,0); frameType = 0; nframes = 0; history = defaultHistory2; //set parameters // N - the number of samples stored in memory per model nN = defaultNsamples; //kNN - k nearest neighbour - number on NN for detecting background - default K=[0.1*nN] nkNN=MAX(1,cvRound(0.1*nN*3+0.40)); //Tb - Threshold Tb*kernelwidth fTb = defaultDist2Threshold; // Shadow detection bShadowDetection = 1;//turn on nShadowDetection = defaultnShadowDetection2; fTau = defaultfTau;// Tau - shadow threshold name_ = "BackgroundSubtractor.KNN"; nLongCounter = 0; nMidCounter = 0; nShortCounter = 0; } //! the full constructor that takes the length of the history, // the number of gaussian mixtures, the background ratio parameter and the noise strength BackgroundSubtractorKNNImpl(int _history, float _dist2Threshold, bool _bShadowDetection=true) { frameSize = Size(0,0); frameType = 0; nframes = 0; history = _history > 0 ? _history : defaultHistory2; //set parameters // N - the number of samples stored in memory per model nN = defaultNsamples; //kNN - k nearest neighbour - number on NN for detcting background - default K=[0.1*nN] nkNN=MAX(1,cvRound(0.1*nN*3+0.40)); //Tb - Threshold Tb*kernelwidth fTb = _dist2Threshold>0? _dist2Threshold : defaultDist2Threshold; bShadowDetection = _bShadowDetection; nShadowDetection = defaultnShadowDetection2; fTau = defaultfTau; name_ = "BackgroundSubtractor.KNN"; nLongCounter = 0; nMidCounter = 0; nShortCounter = 0; } //! the destructor ~BackgroundSubtractorKNNImpl() {} //! the update operator void apply(InputArray image, OutputArray fgmask, double learningRate=-1); //! computes a background image which are the mean of all background gaussians virtual void getBackgroundImage(OutputArray backgroundImage) const; //! re-initialization method void initialize(Size _frameSize, int _frameType) { frameSize = _frameSize; frameType = _frameType; nframes = 0; int nchannels = CV_MAT_CN(frameType); CV_Assert( nchannels <= CV_CN_MAX ); // Reserve memory for the model int size=frameSize.height*frameSize.width; // for each sample of 3 speed pixel models each pixel bg model we store ... // values + flag (nchannels+1 values) bgmodel.create( 1,(nN * 3) * (nchannels+1)* size,CV_8U); bgmodel = Scalar::all(0); //index through the three circular lists aModelIndexShort.create(1,size,CV_8U); aModelIndexMid.create(1,size,CV_8U); aModelIndexLong.create(1,size,CV_8U); //when to update next nNextShortUpdate.create(1,size,CV_8U); nNextMidUpdate.create(1,size,CV_8U); nNextLongUpdate.create(1,size,CV_8U); //Reset counters nShortCounter = 0; nMidCounter = 0; nLongCounter = 0; aModelIndexShort = Scalar::all(0);//random? //((m_nN)*rand())/(RAND_MAX+1);//0...m_nN-1 aModelIndexMid = Scalar::all(0); aModelIndexLong = Scalar::all(0); nNextShortUpdate = Scalar::all(0); nNextMidUpdate = Scalar::all(0); nNextLongUpdate = Scalar::all(0); } virtual int getHistory() const { return history; } virtual void setHistory(int _nframes) { history = _nframes; } virtual int getNSamples() const { return nN; } virtual void setNSamples(int _nN) { nN = _nN; }//needs reinitialization! virtual int getkNNSamples() const { return nkNN; } virtual void setkNNSamples(int _nkNN) { nkNN = _nkNN; } virtual double getDist2Threshold() const { return fTb; } virtual void setDist2Threshold(double _dist2Threshold) { fTb = (float)_dist2Threshold; } virtual bool getDetectShadows() const { return bShadowDetection; } virtual void setDetectShadows(bool detectshadows) { bShadowDetection = detectshadows; } virtual int getShadowValue() const { return nShadowDetection; } virtual void setShadowValue(int value) { nShadowDetection = (uchar)value; } virtual double getShadowThreshold() const { return fTau; } virtual void setShadowThreshold(double value) { fTau = (float)value; } virtual void write(FileStorage& fs) const { writeFormat(fs); fs << "name" << name_ << "history" << history << "nsamples" << nN << "nKNN" << nkNN << "dist2Threshold" << fTb << "detectShadows" << (int)bShadowDetection << "shadowValue" << (int)nShadowDetection << "shadowThreshold" << fTau; } virtual void read(const FileNode& fn) { CV_Assert( (String)fn["name"] == name_ ); history = (int)fn["history"]; nN = (int)fn["nsamples"]; nkNN = (int)fn["nKNN"]; fTb = (float)fn["dist2Threshold"]; bShadowDetection = (int)fn["detectShadows"] != 0; nShadowDetection = saturate_cast((int)fn["shadowValue"]); fTau = (float)fn["shadowThreshold"]; } protected: Size frameSize; int frameType; int nframes; ///////////////////////// //very important parameters - things you will change //////////////////////// int history; //alpha=1/history - speed of update - if the time interval you want to average over is T //set alpha=1/history. It is also usefull at start to make T slowly increase //from 1 until the desired T float fTb; //Tb - threshold on the squared distance from the sample used to decide if it is well described //by the background model or not. A typical value could be 2 sigma //and that is Tb=2*2*10*10 =400; where we take typical pixel level sigma=10 ///////////////////////// //less important parameters - things you might change but be carefull //////////////////////// int nN;//totlal number of samples int nkNN;//number on NN for detcting background - default K=[0.1*nN] //shadow detection parameters bool bShadowDetection;//default 1 - do shadow detection unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value float fTau; // Tau - shadow threshold. The shadow is detected if the pixel is darker //version of the background. Tau is a threshold on how much darker the shadow can be. //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow //See: Prati,Mikic,Trivedi,Cucchiara,"Detecting Moving Shadows...",IEEE PAMI,2003. //model data int nLongCounter;//circular counter int nMidCounter; int nShortCounter; Mat bgmodel; // model data pixel values Mat aModelIndexShort;// index into the models Mat aModelIndexMid; Mat aModelIndexLong; Mat nNextShortUpdate;//random update points per model Mat nNextMidUpdate; Mat nNextLongUpdate; String name_; }; //{ to do - paralelization ... //struct KNNInvoker.... CV_INLINE void _cvUpdatePixelBackgroundNP( long pixel,const uchar* data, int nchannels, int m_nN, uchar* m_aModel, uchar* m_nNextLongUpdate, uchar* m_nNextMidUpdate, uchar* m_nNextShortUpdate, uchar* m_aModelIndexLong, uchar* m_aModelIndexMid, uchar* m_aModelIndexShort, int m_nLongCounter, int m_nMidCounter, int m_nShortCounter, int m_nLongUpdate, int m_nMidUpdate, int m_nShortUpdate, uchar include ) { // hold the offset int ndata=1+nchannels; long offsetLong = ndata * (pixel * m_nN * 3 + m_aModelIndexLong[pixel] + m_nN * 2); long offsetMid = ndata * (pixel * m_nN * 3 + m_aModelIndexMid[pixel] + m_nN * 1); long offsetShort = ndata * (pixel * m_nN * 3 + m_aModelIndexShort[pixel]); // Long update? if (m_nNextLongUpdate[pixel] == m_nLongCounter) { // add the oldest pixel from Mid to the list of values (for each color) memcpy(&m_aModel[offsetLong],&m_aModel[offsetMid],ndata*sizeof(unsigned char)); // increase the index m_aModelIndexLong[pixel] = (m_aModelIndexLong[pixel] >= (m_nN-1)) ? 0 : (m_aModelIndexLong[pixel] + 1); }; if (m_nLongCounter == (m_nLongUpdate-1)) { //m_nNextLongUpdate[pixel] = (uchar)(((m_nLongUpdate)*(rand()-1))/RAND_MAX);//0,...m_nLongUpdate-1; m_nNextLongUpdate[pixel] = (uchar)( rand() % m_nLongUpdate );//0,...m_nLongUpdate-1; }; // Mid update? if (m_nNextMidUpdate[pixel] == m_nMidCounter) { // add this pixel to the list of values (for each color) memcpy(&m_aModel[offsetMid],&m_aModel[offsetShort],ndata*sizeof(unsigned char)); // increase the index m_aModelIndexMid[pixel] = (m_aModelIndexMid[pixel] >= (m_nN-1)) ? 0 : (m_aModelIndexMid[pixel] + 1); }; if (m_nMidCounter == (m_nMidUpdate-1)) { m_nNextMidUpdate[pixel] = (uchar)( rand() % m_nMidUpdate ); }; // Short update? if (m_nNextShortUpdate[pixel] == m_nShortCounter) { // add this pixel to the list of values (for each color) memcpy(&m_aModel[offsetShort],data,ndata*sizeof(unsigned char)); //set the include flag m_aModel[offsetShort+nchannels]=include; // increase the index m_aModelIndexShort[pixel] = (m_aModelIndexShort[pixel] >= (m_nN-1)) ? 0 : (m_aModelIndexShort[pixel] + 1); }; if (m_nShortCounter == (m_nShortUpdate-1)) { m_nNextShortUpdate[pixel] = (uchar)( rand() % m_nShortUpdate ); }; } CV_INLINE int _cvCheckPixelBackgroundNP(long pixel, const uchar* data, int nchannels, int m_nN, uchar* m_aModel, float m_fTb, int m_nkNN, float tau, int m_nShadowDetection, uchar& include) { int Pbf = 0; // the total probability that this pixel is background int Pb = 0; //background model probability float dData[CV_CN_MAX]; //uchar& include=data[nchannels]; include=0;//do we include this pixel into background model? int ndata=nchannels+1; long posPixel = pixel * ndata * m_nN * 3; // float k; // now increase the probability for each pixel for (int n = 0; n < m_nN*3; n++) { uchar* mean_m = &m_aModel[posPixel + n*ndata]; //calculate difference and distance float dist2; if( nchannels == 3 ) { dData[0] = (float)mean_m[0] - data[0]; dData[1] = (float)mean_m[1] - data[1]; dData[2] = (float)mean_m[2] - data[2]; dist2 = dData[0]*dData[0] + dData[1]*dData[1] + dData[2]*dData[2]; } else { dist2 = 0.f; for( int c = 0; c < nchannels; c++ ) { dData[c] = (float)mean_m[c] - data[c]; dist2 += dData[c]*dData[c]; } } if (dist2= m_nkNN)//Tb { include=1;//include return 1;//background ->exit }; } }; }; //include? if (Pbf>=m_nkNN)//m_nTbf) { include=1; } int Ps = 0; // the total probability that this pixel is background shadow // Detected as moving object, perform shadow detection if (m_nShadowDetection) { for (int n = 0; n < m_nN*3; n++) { //long subPosPixel = posPixel + n*ndata; uchar* mean_m = &m_aModel[posPixel + n*ndata]; if(mean_m[nchannels])//check only background { float numerator = 0.0f; float denominator = 0.0f; for( int c = 0; c < nchannels; c++ ) { numerator += (float)data[c] * mean_m[c]; denominator += (float)mean_m[c] * mean_m[c]; } // no division by zero allowed if( denominator == 0 ) return 0; // if tau < a < 1 then also check the color distortion if( numerator <= denominator && numerator >= tau*denominator ) { float a = numerator / denominator; float dist2a = 0.0f; for( int c = 0; c < nchannels; c++ ) { float dD= a*mean_m[c] - data[c]; dist2a += dD*dD; } if (dist2a= m_nkNN)//shadow return 2; }; }; }; }; } return 0; } CV_INLINE void icvUpdatePixelBackgroundNP(const Mat& _src, Mat& _dst, Mat& _bgmodel, Mat& _nNextLongUpdate, Mat& _nNextMidUpdate, Mat& _nNextShortUpdate, Mat& _aModelIndexLong, Mat& _aModelIndexMid, Mat& _aModelIndexShort, int& _nLongCounter, int& _nMidCounter, int& _nShortCounter, int _nN, float _fAlphaT, float _fTb, int _nkNN, float _fTau, int _bShadowDetection, uchar nShadowDetection ) { int nchannels = CV_MAT_CN(_src.type()); //model uchar* m_aModel=_bgmodel.ptr(0); uchar* m_nNextLongUpdate=_nNextLongUpdate.ptr(0); uchar* m_nNextMidUpdate=_nNextMidUpdate.ptr(0); uchar* m_nNextShortUpdate=_nNextShortUpdate.ptr(0); uchar* m_aModelIndexLong=_aModelIndexLong.ptr(0); uchar* m_aModelIndexMid=_aModelIndexMid.ptr(0); uchar* m_aModelIndexShort=_aModelIndexShort.ptr(0); //some constants int m_nN=_nN; float m_fAlphaT=_fAlphaT; float m_fTb=_fTb;//Tb - threshold on the distance float m_fTau=_fTau; int m_nkNN=_nkNN; int m_bShadowDetection=_bShadowDetection; //recalculate update rates - in case alpha is changed // calculate update parameters (using alpha) int Kshort,Kmid,Klong; //approximate exponential learning curve Kshort=(int)(log(0.7)/log(1-m_fAlphaT))+1;//Kshort Kmid=(int)(log(0.4)/log(1-m_fAlphaT))-Kshort+1;//Kmid Klong=(int)(log(0.1)/log(1-m_fAlphaT))-Kshort-Kmid+1;//Klong //refresh rates int m_nShortUpdate = (Kshort/m_nN)+1; int m_nMidUpdate = (Kmid/m_nN)+1; int m_nLongUpdate = (Klong/m_nN)+1; //int m_nShortUpdate = MAX((Kshort/m_nN),m_nN); //int m_nMidUpdate = MAX((Kmid/m_nN),m_nN); //int m_nLongUpdate = MAX((Klong/m_nN),m_nN); //update counters for the refresh rate int m_nLongCounter=_nLongCounter; int m_nMidCounter=_nMidCounter; int m_nShortCounter=_nShortCounter; _nShortCounter++;//0,1,...,m_nShortUpdate-1 _nMidCounter++; _nLongCounter++; if (_nShortCounter >= m_nShortUpdate) _nShortCounter = 0; if (_nMidCounter >= m_nMidUpdate) _nMidCounter = 0; if (_nLongCounter >= m_nLongUpdate) _nLongCounter = 0; //go through the image long i = 0; for (long y = 0; y < _src.rows; y++) { for (long x = 0; x < _src.cols; x++) { const uchar* data = _src.ptr((int)y, (int)x); //update model+ background subtract uchar include=0; int result= _cvCheckPixelBackgroundNP(i, data, nchannels, m_nN, m_aModel, m_fTb,m_nkNN, m_fTau,m_bShadowDetection,include); _cvUpdatePixelBackgroundNP(i,data,nchannels, m_nN, m_aModel, m_nNextLongUpdate, m_nNextMidUpdate, m_nNextShortUpdate, m_aModelIndexLong, m_aModelIndexMid, m_aModelIndexShort, m_nLongCounter, m_nMidCounter, m_nShortCounter, m_nLongUpdate, m_nMidUpdate, m_nShortUpdate, include ); switch (result) { case 0: //foreground *_dst.ptr((int)y, (int)x) = 255; break; case 1: //background *_dst.ptr((int)y, (int)x) = 0; break; case 2: //shadow *_dst.ptr((int)y, (int)x) = nShadowDetection; break; } i++; } } } void BackgroundSubtractorKNNImpl::apply(InputArray _image, OutputArray _fgmask, double learningRate) { CV_INSTRUMENT_REGION() Mat image = _image.getMat(); bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType; if( needToInitialize ) initialize(image.size(), image.type()); _fgmask.create( image.size(), CV_8U ); Mat fgmask = _fgmask.getMat(); ++nframes; learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history ); CV_Assert(learningRate >= 0); //parallel_for_(Range(0, image.rows), // KNNInvoker(image, fgmask, icvUpdatePixelBackgroundNP(image, fgmask, bgmodel, nNextLongUpdate, nNextMidUpdate, nNextShortUpdate, aModelIndexLong, aModelIndexMid, aModelIndexShort, nLongCounter, nMidCounter, nShortCounter, nN, (float)learningRate, fTb, nkNN, fTau, bShadowDetection, nShadowDetection ); } void BackgroundSubtractorKNNImpl::getBackgroundImage(OutputArray backgroundImage) const { CV_INSTRUMENT_REGION() int nchannels = CV_MAT_CN(frameType); //CV_Assert( nchannels == 3 ); Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0)); int ndata=nchannels+1; int modelstep=(ndata * nN * 3); const uchar* pbgmodel=bgmodel.ptr(0); for(int row=0; row(row, col) = Vec3b(mean_m); break; } } pbgmodel=pbgmodel+modelstep; } } switch(CV_MAT_CN(frameType)) { case 1: { std::vector channels; split(meanBackground, channels); channels[0].copyTo(backgroundImage); break; } case 3: { meanBackground.copyTo(backgroundImage); break; } default: CV_Error(Error::StsUnsupportedFormat, ""); } } Ptr createBackgroundSubtractorKNN(int _history, double _threshold2, bool _bShadowDetection) { return makePtr(_history, (float)_threshold2, _bShadowDetection); } } /* End of file. */