/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include #include "npy_blob.hpp" #include #include #include namespace opencv_test { namespace { template static String _tf(TString filename) { String basetestdir = getOpenCVExtraDir(); size_t len = basetestdir.size(); if(len > 0 && basetestdir[len-1] != '/' && basetestdir[len-1] != '\\') return (basetestdir + "/dnn/layers") + filename; return (basetestdir + "dnn/layers/") + filename; } void runLayer(Ptr layer, std::vector &inpBlobs, std::vector &outBlobs) { size_t ninputs = inpBlobs.size(); std::vector inp_(ninputs); std::vector inp(ninputs); std::vector outp, intp; std::vector inputs, outputs, internals; for (size_t i = 0; i < ninputs; i++) { inp_[i] = inpBlobs[i].clone(); inp[i] = &inp_[i]; inputs.push_back(shape(inp_[i])); } layer->getMemoryShapes(inputs, 0, outputs, internals); for (size_t i = 0; i < outputs.size(); i++) { outp.push_back(Mat(outputs[i], CV_32F)); } for (size_t i = 0; i < internals.size(); i++) { intp.push_back(Mat(internals[i], CV_32F)); } layer->finalize(inp, outp); layer->forward(inp, outp, intp); size_t noutputs = outp.size(); outBlobs.resize(noutputs); for (size_t i = 0; i < noutputs; i++) outBlobs[i] = outp[i]; } void testLayerUsingCaffeModels(String basename, int targetId = DNN_TARGET_CPU, bool useCaffeModel = false, bool useCommonInputBlob = true) { String prototxt = _tf(basename + ".prototxt"); String caffemodel = _tf(basename + ".caffemodel"); String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy"); String outfile = _tf(basename + ".npy"); Net net = readNetFromCaffe(prototxt, (useCaffeModel) ? caffemodel : String()); ASSERT_FALSE(net.empty()); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(targetId); Mat inp = blobFromNPY(inpfile); Mat ref = blobFromNPY(outfile); net.setInput(inp, "input"); Mat out = net.forward("output"); normAssert(ref, out); } TEST(Layer_Test_Softmax, Accuracy) { testLayerUsingCaffeModels("layer_softmax"); } OCL_TEST(Layer_Test_Softmax, Accuracy) { testLayerUsingCaffeModels("layer_softmax", DNN_TARGET_OPENCL); } TEST(Layer_Test_LRN_spatial, Accuracy) { testLayerUsingCaffeModels("layer_lrn_spatial"); } OCL_TEST(Layer_Test_LRN_spatial, Accuracy) { testLayerUsingCaffeModels("layer_lrn_spatial", DNN_TARGET_OPENCL); } TEST(Layer_Test_LRN_channels, Accuracy) { testLayerUsingCaffeModels("layer_lrn_channels"); } OCL_TEST(Layer_Test_LRN_channels, Accuracy) { testLayerUsingCaffeModels("layer_lrn_channels", DNN_TARGET_OPENCL); } TEST(Layer_Test_Convolution, Accuracy) { testLayerUsingCaffeModels("layer_convolution", DNN_TARGET_CPU, true); } OCL_TEST(Layer_Test_Convolution, Accuracy) { testLayerUsingCaffeModels("layer_convolution", DNN_TARGET_OPENCL, true); } TEST(Layer_Test_DeConvolution, Accuracy) { testLayerUsingCaffeModels("layer_deconvolution", DNN_TARGET_CPU, true, false); } OCL_TEST(Layer_Test_DeConvolution, Accuracy) { testLayerUsingCaffeModels("layer_deconvolution", DNN_TARGET_OPENCL, true, false); } TEST(Layer_Test_InnerProduct, Accuracy) { testLayerUsingCaffeModels("layer_inner_product", DNN_TARGET_CPU, true); } OCL_TEST(Layer_Test_InnerProduct, Accuracy) { testLayerUsingCaffeModels("layer_inner_product", DNN_TARGET_OPENCL, true); } TEST(Layer_Test_Pooling_max, Accuracy) { testLayerUsingCaffeModels("layer_pooling_max"); } OCL_TEST(Layer_Test_Pooling_max, Accuracy) { testLayerUsingCaffeModels("layer_pooling_max", DNN_TARGET_OPENCL); } TEST(Layer_Test_Pooling_ave, Accuracy) { testLayerUsingCaffeModels("layer_pooling_ave"); } OCL_TEST(Layer_Test_Pooling_ave, Accuracy) { testLayerUsingCaffeModels("layer_pooling_ave", DNN_TARGET_OPENCL); } TEST(Layer_Test_MVN, Accuracy) { testLayerUsingCaffeModels("layer_mvn"); } OCL_TEST(Layer_Test_MVN, Accuracy) { testLayerUsingCaffeModels("layer_mvn", DNN_TARGET_OPENCL); } void testReshape(const MatShape& inputShape, const MatShape& targetShape, int axis = 0, int num_axes = -1, MatShape mask = MatShape()) { LayerParams params; params.set("axis", axis); params.set("num_axes", num_axes); if (!mask.empty()) { params.set("dim", DictValue::arrayInt(&mask[0], mask.size())); } Mat inp(inputShape.size(), &inputShape[0], CV_32F); std::vector inpVec(1, inp); std::vector outVec, intVec; Ptr rl = LayerFactory::createLayerInstance("Reshape", params); runLayer(rl, inpVec, outVec); Mat& out = outVec[0]; MatShape shape(out.size.p, out.size.p + out.dims); EXPECT_EQ(shape, targetShape); } TEST(Layer_Test_Reshape, Accuracy) { { int inp[] = {4, 3, 1, 2}; int out[] = {4, 3, 2}; testReshape(MatShape(inp, inp + 4), MatShape(out, out + 3), 2, 1); } { int inp[] = {1, 128, 4, 4}; int out[] = {1, 2048}; int mask[] = {-1, 2048}; testReshape(MatShape(inp, inp + 4), MatShape(out, out + 2), 0, -1, MatShape(mask, mask + 2)); } } TEST(Layer_Test_BatchNorm, Accuracy) { testLayerUsingCaffeModels("layer_batch_norm", DNN_TARGET_CPU, true); } TEST(Layer_Test_BatchNorm, local_stats) { testLayerUsingCaffeModels("layer_batch_norm_local_stats", DNN_TARGET_CPU, true, false); } TEST(Layer_Test_ReLU, Accuracy) { testLayerUsingCaffeModels("layer_relu"); } OCL_TEST(Layer_Test_ReLU, Accuracy) { testLayerUsingCaffeModels("layer_relu", DNN_TARGET_OPENCL); } TEST(Layer_Test_Dropout, Accuracy) { testLayerUsingCaffeModels("layer_dropout"); } TEST(Layer_Test_Concat, Accuracy) { testLayerUsingCaffeModels("layer_concat"); } OCL_TEST(Layer_Test_Concat, Accuracy) { testLayerUsingCaffeModels("layer_concat", DNN_TARGET_OPENCL); } TEST(Layer_Test_Fused_Concat, Accuracy) { // Test case // input // | // v // some_layer // | | // v v // concat Net net; int interLayer; { LayerParams lp; lp.type = "AbsVal"; lp.name = "someLayer"; interLayer = net.addLayerToPrev(lp.name, lp.type, lp); } { LayerParams lp; lp.set("axis", 1); lp.type = "Concat"; lp.name = "testConcat"; int id = net.addLayer(lp.name, lp.type, lp); net.connect(interLayer, 0, id, 0); net.connect(interLayer, 0, id, 1); } int shape[] = {1, 2, 3, 4}; Mat input(4, shape, CV_32F); randu(input, 0.0f, 1.0f); // [0, 1] to make AbsVal an identity transformation. net.setInput(input); Mat out = net.forward(); normAssert(slice(out, Range::all(), Range(0, 2), Range::all(), Range::all()), input); normAssert(slice(out, Range::all(), Range(2, 4), Range::all(), Range::all()), input); // testLayerUsingCaffeModels("layer_concat_optim", DNN_TARGET_CPU, true, false); testLayerUsingCaffeModels("layer_concat_shared_input", DNN_TARGET_CPU, true, false); } TEST(Layer_Test_Eltwise, Accuracy) { testLayerUsingCaffeModels("layer_eltwise"); } OCL_TEST(Layer_Test_Eltwise, Accuracy) { testLayerUsingCaffeModels("layer_eltwise", DNN_TARGET_OPENCL); } TEST(Layer_Test_PReLU, Accuracy) { testLayerUsingCaffeModels("layer_prelu", DNN_TARGET_CPU, true); testLayerUsingCaffeModels("layer_prelu_fc", DNN_TARGET_CPU, true, false); } OCL_TEST(Layer_Test_PReLU, Accuracy) { testLayerUsingCaffeModels("layer_prelu", DNN_TARGET_OPENCL, true); testLayerUsingCaffeModels("layer_prelu_fc", DNN_TARGET_OPENCL, true, false); } //template //static void test_Layer_Concat() //{ // Matx21f a(1.f, 1.f), b(2.f, 2.f), c(3.f, 3.f); // std::vector res(1), src = { Blob(XMat(a)), Blob(XMat(b)), Blob(XMat(c)) }; // Blob ref(XMat(Matx23f(1.f, 2.f, 3.f, 1.f, 2.f, 3.f))); // // runLayer(ConcatLayer::create(1), src, res); // normAssert(ref, res[0]); //} //TEST(Layer_Concat, Accuracy) //{ // test_Layer_Concat()); //} //OCL_TEST(Layer_Concat, Accuracy) //{ // OCL_ON(test_Layer_Concat()); // ); //} static void test_Reshape_Split_Slice_layers(int targetId) { Net net = readNetFromCaffe(_tf("reshape_and_slice_routines.prototxt")); ASSERT_FALSE(net.empty()); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(targetId); Mat input(6, 12, CV_32F); RNG rng(0); rng.fill(input, RNG::UNIFORM, -1, 1); net.setInput(input, "input"); Mat output = net.forward("output"); normAssert(input, output); } TEST(Layer_Test_Reshape_Split_Slice, Accuracy) { test_Reshape_Split_Slice_layers(DNN_TARGET_CPU); } OCL_TEST(Layer_Test_Reshape_Split_Slice, Accuracy) { test_Reshape_Split_Slice_layers(DNN_TARGET_OPENCL); } TEST(Layer_Conv_Elu, Accuracy) { Net net = readNetFromTensorflow(_tf("layer_elu_model.pb")); ASSERT_FALSE(net.empty()); Mat inp = blobFromNPY(_tf("layer_elu_in.npy")); Mat ref = blobFromNPY(_tf("layer_elu_out.npy")); net.setInput(inp, "input"); Mat out = net.forward(); normAssert(ref, out); } class Layer_LSTM_Test : public ::testing::Test { public: int numInp, numOut; Mat Wh, Wx, b; Ptr layer; std::vector inputs, outputs; Layer_LSTM_Test() {} void init(const MatShape &inpShape_, const MatShape &outShape_, bool produceCellOutput, bool useTimestampDim) { numInp = total(inpShape_); numOut = total(outShape_); Wh = Mat::ones(4 * numOut, numOut, CV_32F); Wx = Mat::ones(4 * numOut, numInp, CV_32F); b = Mat::ones(4 * numOut, 1, CV_32F); LayerParams lp; lp.blobs.resize(3); lp.blobs[0] = Wh; lp.blobs[1] = Wx; lp.blobs[2] = b; lp.set("produce_cell_output", produceCellOutput); lp.set("use_timestamp_dim", useTimestampDim); layer = LSTMLayer::create(lp); layer->setOutShape(outShape_); } }; TEST_F(Layer_LSTM_Test, get_set_test) { const int TN = 4; MatShape inpShape = shape(5, 3, 2); MatShape outShape = shape(3, 1, 2); MatShape inpResShape = concat(shape(TN), inpShape); MatShape outResShape = concat(shape(TN), outShape); init(inpShape, outShape, true, false); layer->setOutShape(outShape); Mat C((int)outResShape.size(), &outResShape[0], CV_32F); randu(C, -1., 1.); Mat H = C.clone(); randu(H, -1., 1.); Mat inp((int)inpResShape.size(), &inpResShape[0], CV_32F); randu(inp, -1., 1.); inputs.push_back(inp); runLayer(layer, inputs, outputs); EXPECT_EQ(2u, outputs.size()); print(outResShape, "outResShape"); print(shape(outputs[0]), "out0"); print(shape(outputs[0]), "out1"); EXPECT_EQ(outResShape, shape(outputs[0])); EXPECT_EQ(outResShape, shape(outputs[1])); EXPECT_EQ(0, layer->inputNameToIndex("x")); EXPECT_EQ(0, layer->outputNameToIndex("h")); EXPECT_EQ(1, layer->outputNameToIndex("c")); } TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent) { LayerParams lp; lp.blobs.resize(3); lp.blobs[0] = blobFromNPY(_tf("lstm.prototxt.w_2.npy")); // Wh lp.blobs[1] = blobFromNPY(_tf("lstm.prototxt.w_0.npy")); // Wx lp.blobs[2] = blobFromNPY(_tf("lstm.prototxt.w_1.npy")); // bias Ptr layer = LSTMLayer::create(lp); Mat inp = blobFromNPY(_tf("recurrent.input.npy")); std::vector inputs(1, inp), outputs; runLayer(layer, inputs, outputs); Mat h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy")); normAssert(h_t_reference, outputs[0]); } TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent) { Ptr layer = RNNLayer::create(LayerParams()); layer->setWeights( blobFromNPY(_tf("rnn.prototxt.w_0.npy")), blobFromNPY(_tf("rnn.prototxt.w_1.npy")), blobFromNPY(_tf("rnn.prototxt.w_2.npy")), blobFromNPY(_tf("rnn.prototxt.w_3.npy")), blobFromNPY(_tf("rnn.prototxt.w_4.npy")) ); std::vector output, input(1, blobFromNPY(_tf("recurrent.input.npy"))); runLayer(layer, input, output); Mat h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy")); normAssert(h_ref, output[0]); } class Layer_RNN_Test : public ::testing::Test { public: int nX, nH, nO, nT, nS; Mat Whh, Wxh, bh, Who, bo; Ptr layer; std::vector inputs, outputs; Layer_RNN_Test() { nT = 3; nS = 5; nX = 31; nH = 64; nO = 100; Whh = Mat::ones(nH, nH, CV_32F); Wxh = Mat::ones(nH, nX, CV_32F); bh = Mat::ones(nH, 1, CV_32F); Who = Mat::ones(nO, nH, CV_32F); bo = Mat::ones(nO, 1, CV_32F); layer = RNNLayer::create(LayerParams()); layer->setProduceHiddenOutput(true); layer->setWeights(Wxh, bh, Whh, Who, bo); } }; TEST_F(Layer_RNN_Test, get_set_test) { int sz[] = { nT, nS, 1, nX }; Mat inp(4, sz, CV_32F); randu(inp, -1., 1.); inputs.push_back(inp); runLayer(layer, inputs, outputs); EXPECT_EQ(outputs.size(), 2u); EXPECT_EQ(shape(outputs[0]), shape(nT, nS, nO)); EXPECT_EQ(shape(outputs[1]), shape(nT, nS, nH)); } void testLayerUsingDarknetModels(String basename, bool useDarknetModel = false, bool useCommonInputBlob = true) { String cfg = _tf(basename + ".cfg"); String weights = _tf(basename + ".weights"); String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy"); String outfile = _tf(basename + ".npy"); Net net = readNetFromDarknet(cfg, (useDarknetModel) ? weights : String()); ASSERT_FALSE(net.empty()); Mat inp = blobFromNPY(inpfile); Mat ref = blobFromNPY(outfile); net.setInput(inp, "data"); Mat out = net.forward(); normAssert(ref, out); } TEST(Layer_Test_Region, Accuracy) { testLayerUsingDarknetModels("region", false, false); } TEST(Layer_Test_Reorg, Accuracy) { testLayerUsingDarknetModels("reorg", false, false); } TEST(Layer_Test_ROIPooling, Accuracy) { Net net = readNetFromCaffe(_tf("net_roi_pooling.prototxt")); Mat inp = blobFromNPY(_tf("net_roi_pooling.input.npy")); Mat rois = blobFromNPY(_tf("net_roi_pooling.rois.npy")); Mat ref = blobFromNPY(_tf("net_roi_pooling.npy")); net.setInput(inp, "input"); net.setInput(rois, "rois"); Mat out = net.forward(); normAssert(out, ref); } typedef testing::TestWithParam Test_Caffe_layers; TEST_P(Test_Caffe_layers, FasterRCNN_Proposal) { Net net = readNetFromCaffe(_tf("net_faster_rcnn_proposal.prototxt")); net.setPreferableTarget(GetParam()); Mat scores = blobFromNPY(_tf("net_faster_rcnn_proposal.scores.npy")); Mat deltas = blobFromNPY(_tf("net_faster_rcnn_proposal.deltas.npy")); Mat imInfo = (Mat_(1, 3) << 600, 800, 1.6f); net.setInput(scores, "rpn_cls_prob_reshape"); net.setInput(deltas, "rpn_bbox_pred"); net.setInput(imInfo, "im_info"); std::vector outs; net.forward(outs, "output"); for (int i = 0; i < 2; ++i) { Mat ref = blobFromNPY(_tf(i == 0 ? "net_faster_rcnn_proposal.out_rois.npy" : "net_faster_rcnn_proposal.out_scores.npy")); const int numDets = ref.size[0]; EXPECT_LE(numDets, outs[i].size[0]); normAssert(outs[i].rowRange(0, numDets), ref); if (numDets < outs[i].size[0]) EXPECT_EQ(countNonZero(outs[i].rowRange(numDets, outs[i].size[0])), 0); } } INSTANTIATE_TEST_CASE_P(/**/, Test_Caffe_layers, availableDnnTargets()); typedef testing::TestWithParam > Scale_untrainable; TEST_P(Scale_untrainable, Accuracy) { Vec4i inpShapeVec = get<0>(GetParam()); int axis = get<1>(GetParam())[0]; int weightsDims = get<1>(GetParam())[1]; bool testFusion = get<2>(GetParam()); const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]}; // Create a network with two inputs. Scale layer multiplies a first input to // a second one. See http://caffe.berkeleyvision.org/tutorial/layers/scale.html Net net; // Check that this version of Scale layer won't be fused with Convolution layer. if (testFusion) { LayerParams lp; lp.set("kernel_size", 1); lp.set("num_output", 3); lp.set("group", 3); lp.set("bias_term", false); lp.type = "Convolution"; lp.name = "testConv"; std::vector weightsShape(4); weightsShape[0] = 3; // #outChannels weightsShape[1] = 1; // #inpChannels / group weightsShape[2] = 1; // height weightsShape[3] = 1; // width Mat weights(weightsShape, CV_32F); weights.setTo(1); lp.blobs.push_back(weights); net.addLayerToPrev(lp.name, lp.type, lp); } LayerParams lp; lp.type = "Scale"; lp.name = "testLayer"; lp.set("axis", axis); int id = net.addLayerToPrev(lp.name, lp.type, lp); net.connect(0, 1, id, 1); Mat input(4, inpShape, CV_32F); Mat weights(weightsDims, &inpShape[axis], CV_32F); randu(input, -1, 1); randu(weights, -1, 1); std::vector inpNames(2); inpNames[0] = "scale_input"; inpNames[1] = "scale_weights"; net.setInputsNames(inpNames); net.setInput(input, inpNames[0]); net.setInput(weights, inpNames[1]); Mat out = net.forward(); Mat ref(input.dims, input.size, CV_32F); float* inpData = (float*)input.data; float* refData = (float*)ref.data; float* weightsData = (float*)weights.data; int spatialSize = 1; for (int i = axis + weightsDims; i < 4; ++i) spatialSize *= inpShape[i]; for (int i = 0; i < ref.total(); ++i) { float w = weightsData[(i / spatialSize) % weights.total()]; refData[i] = inpData[i] * w; } normAssert(out, ref); } INSTANTIATE_TEST_CASE_P(Layer_Test, Scale_untrainable, Combine( /*input size*/ Values(Vec4i(2, 3, 4, 5)), /*axis, #dims*/ Values(Vec2i(0, 1), Vec2i(0, 2), Vec2i(0, 3), Vec2i(0, 4), Vec2i(1, 1), Vec2i(1, 2), Vec2i(1, 3), Vec2i(2, 1), Vec2i(2, 2), Vec2i(3, 1)), /*conv fusion*/ testing::Bool() )); typedef testing::TestWithParam > Crop; TEST_P(Crop, Accuracy) { Vec4i inpShapeVec = get<0>(GetParam()); Vec4i sizShapeVec = get<1>(GetParam()); int axis = get<2>(GetParam()); int numOffsets = get<3>(GetParam()); int offsetVal = get<4>(GetParam()); const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]}; const int sizShape[] = {sizShapeVec[0], sizShapeVec[1], sizShapeVec[2], sizShapeVec[3]}; // Create a network with two inputs. Crop layer crops a first input to // the size of a second one. // See http://caffe.berkeleyvision.org/tutorial/layers/crop.html Net net; LayerParams lp; lp.name = "testCrop"; lp.type = "Crop"; lp.set("axis", axis); if (numOffsets > 0) { std::vector offsets(numOffsets, offsetVal); lp.set("offset", DictValue::arrayInt(&offsets[0], offsets.size())); } else offsetVal = 0; int id = net.addLayerToPrev(lp.name, lp.type, lp); net.connect(0, 1, id, 1); Mat inpImage(4, inpShape, CV_32F); Mat sizImage(4, sizShape, CV_32F); randu(inpImage, -1, 1); randu(sizImage, -1, 1); std::vector inpNames(2); inpNames[0] = "cropImage"; inpNames[1] = "sizImage"; net.setInputsNames(inpNames); net.setInput(inpImage, inpNames[0]); net.setInput(sizImage, inpNames[1]); // There are a few conditions that represent invalid input to the crop // layer, so in those cases we want to verify an exception is thrown. bool shouldThrowException = false; if (numOffsets > 1 && numOffsets != 4 - axis) shouldThrowException = true; else for (int i = axis; i < 4; i++) if (sizShape[i] + offsetVal > inpShape[i]) shouldThrowException = true; Mat out; if (shouldThrowException) { ASSERT_ANY_THROW(out = net.forward()); return; } else out = net.forward(); // Finally, compare the cropped output blob from the DNN layer (out) // to a reference blob (ref) that we compute here. std::vector crop_range; crop_range.resize(4, Range::all()); for (int i = axis; i < 4; i++) crop_range[i] = Range(offsetVal, sizShape[i] + offsetVal); Mat ref(sizImage.dims, sizImage.size, CV_32F); inpImage(&crop_range[0]).copyTo(ref); normAssert(out, ref); } INSTANTIATE_TEST_CASE_P(Layer_Test, Crop, Combine( /*input blob shape*/ Values(Vec4i(1, 3, 20, 30)), /*cropsize blob shape*/ Values(Vec4i(1, 3, 10, 12)), /*start axis*/ Values(0, 1, 2), /*number of offsets*/ Values(0, 1, 2, 4), /*offset value*/ Values(3, 4) )); // Check that by default average pooling layer should not count zero padded values // into the normalization area. TEST(Layer_Test_Average_pooling_kernel_area, Accuracy) { LayerParams lp; lp.name = "testAvePool"; lp.type = "Pooling"; lp.set("kernel_size", 2); lp.set("stride", 2); lp.set("pool", "AVE"); Net net; net.addLayerToPrev(lp.name, lp.type, lp); // 1 2 | 3 // 4 5 | 6 // ----+-- // 7 8 | 9 Mat inp = (Mat_(3, 3) << 1, 2, 3, 4, 5, 6, 7, 8, 9); Mat target = (Mat_(2, 2) << (1 + 2 + 4 + 5) / 4.f, (3 + 6) / 2.f, (7 + 8) / 2.f, 9); Mat tmp = blobFromImage(inp); net.setInput(blobFromImage(inp)); Mat out = net.forward(); normAssert(out, blobFromImage(target)); } // Test PriorBoxLayer in case of no aspect ratios (just squared proposals). TEST(Layer_PriorBox, squares) { LayerParams lp; lp.name = "testPriorBox"; lp.type = "PriorBox"; lp.set("min_size", 2); lp.set("flip", true); lp.set("clip", true); float variance[] = {0.1f, 0.1f, 0.2f, 0.2f}; float aspectRatios[] = {1.0f}; // That should be ignored. lp.set("variance", DictValue::arrayReal(&variance[0], 4)); lp.set("aspect_ratio", DictValue::arrayReal(&aspectRatios[0], 1)); Net net; int id = net.addLayerToPrev(lp.name, lp.type, lp); net.connect(0, 0, id, 1); // The second input is an input image. Shapes are used for boxes normalization. Mat inp(1, 2, CV_32F); randu(inp, -1, 1); net.setInput(blobFromImage(inp)); Mat out = net.forward(); Mat target = (Mat_(4, 4) << 0.0, 0.0, 0.75, 1.0, 0.25, 0.0, 1.0, 1.0, 0.1f, 0.1f, 0.2f, 0.2f, 0.1f, 0.1f, 0.2f, 0.2f); normAssert(out.reshape(1, 4), target); } #ifdef HAVE_INF_ENGINE // Using Intel's Model Optimizer generate .xml and .bin files: // ./ModelOptimizer -w /path/to/caffemodel -d /path/to/prototxt \ // -p FP32 -i -b ${batch_size} -o /path/to/output/folder TEST(Layer_Test_Convolution_DLDT, Accuracy) { Net netDefault = readNet(_tf("layer_convolution.caffemodel"), _tf("layer_convolution.prototxt")); Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin")); Mat inp = blobFromNPY(_tf("blob.npy")); netDefault.setInput(inp); Mat outDefault = netDefault.forward(); net.setInput(inp); Mat out = net.forward(); normAssert(outDefault, out); } // 1. Create a .prototxt file with the following network: // layer { // type: "Input" name: "data" top: "data" // input_param { shape { dim: 1 dim: 2 dim: 3 } } // } // layer { // type: "Input" name: "second_input" top: "second_input" // input_param { shape { dim: 1 dim: 2 dim: 3 } } // } // layer { // type: "Eltwise" name: "output" top: "output" // bottom: "data" bottom: "second_input" // eltwise_param { operation: SUM } // } // // 2. Create a .caffemodel file using Caffe: // // import caffe // net = caffe.Net('/path/to/prototxt', caffe.TEST) // net.save('/path/to/caffemodel') // // 3. Convert using ModelOptimizer. TEST(Test_DLDT, two_inputs) { Net net = readNet(_tf("net_two_inputs.xml"), _tf("net_two_inputs.bin")); int inpSize[] = {1, 2, 3}; Mat firstInp(3, &inpSize[0], CV_32F); Mat secondInp(3, &inpSize[0], CV_32F); randu(firstInp, -1, 1); randu(secondInp, -1, 1); net.setInput(firstInp, "data"); net.setInput(secondInp, "second_input"); Mat out = net.forward(); normAssert(out, firstInp + secondInp); } #endif // HAVE_INF_ENGINE }} // namespace