/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHPLANE_H #define INCLUDED_IMATHPLANE_H //---------------------------------------------------------------------- // // template class Plane3 // // The Imath::Plane3<> class represents a half space, so the // normal may point either towards or away from origin. The // plane P can be represented by Imath::Plane3 as either p or -p // corresponding to the two half-spaces on either side of the // plane. Any function which computes a distance will return // either negative or positive values for the distance indicating // which half-space the point is in. Note that reflection, and // intersection functions will operate as expected. // //---------------------------------------------------------------------- #include "ImathVec.h" #include "ImathLine.h" namespace Imath { template class Plane3 { public: Vec3 normal; T distance; Plane3() {} Plane3(const Vec3 &normal, T distance); Plane3(const Vec3 &point, const Vec3 &normal); Plane3(const Vec3 &point1, const Vec3 &point2, const Vec3 &point3); //---------------------- // Various set methods //---------------------- void set(const Vec3 &normal, T distance); void set(const Vec3 &point, const Vec3 &normal); void set(const Vec3 &point1, const Vec3 &point2, const Vec3 &point3 ); //---------------------- // Utilities //---------------------- bool intersect(const Line3 &line, Vec3 &intersection) const; bool intersectT(const Line3 &line, T ¶meter) const; T distanceTo(const Vec3 &) const; Vec3 reflectPoint(const Vec3 &) const; Vec3 reflectVector(const Vec3 &) const; }; //-------------------- // Convenient typedefs //-------------------- typedef Plane3 Plane3f; typedef Plane3 Plane3d; //--------------- // Implementation //--------------- template inline Plane3::Plane3(const Vec3 &p0, const Vec3 &p1, const Vec3 &p2) { set(p0,p1,p2); } template inline Plane3::Plane3(const Vec3 &n, T d) { set(n, d); } template inline Plane3::Plane3(const Vec3 &p, const Vec3 &n) { set(p, n); } template inline void Plane3::set(const Vec3& point1, const Vec3& point2, const Vec3& point3) { normal = (point2 - point1) % (point3 - point1); normal.normalize(); distance = normal ^ point1; } template inline void Plane3::set(const Vec3& point, const Vec3& n) { normal = n; normal.normalize(); distance = normal ^ point; } template inline void Plane3::set(const Vec3& n, T d) { normal = n; normal.normalize(); distance = d; } template inline T Plane3::distanceTo(const Vec3 &point) const { return (point ^ normal) - distance; } template inline Vec3 Plane3::reflectPoint(const Vec3 &point) const { return normal * distanceTo(point) * -2.0 + point; } template inline Vec3 Plane3::reflectVector(const Vec3 &v) const { return normal * (normal ^ v) * 2.0 - v; } template inline bool Plane3::intersect(const Line3& line, Vec3& point) const { T d = normal ^ line.dir; if ( d == 0.0 ) return false; T t = - ((normal ^ line.pos) - distance) / d; point = line(t); return true; } template inline bool Plane3::intersectT(const Line3& line, T &t) const { T d = normal ^ line.dir; if ( d == 0.0 ) return false; t = - ((normal ^ line.pos) - distance) / d; return true; } template std::ostream &operator<< (std::ostream &o, const Plane3 &plane) { return o << "(" << plane.normal << ", " << plane.distance << ")"; } template Plane3 operator* (const Plane3 &plane, const Matrix44 &M) { // T // -1 // Could also compute M but that would suck. // Vec3 dir1 = Vec3 (1, 0, 0) % plane.normal; T dir1Len = dir1 ^ dir1; Vec3 tmp = Vec3 (0, 1, 0) % plane.normal; T tmpLen = tmp ^ tmp; if (tmpLen > dir1Len) { dir1 = tmp; dir1Len = tmpLen; } tmp = Vec3 (0, 0, 1) % plane.normal; tmpLen = tmp ^ tmp; if (tmpLen > dir1Len) { dir1 = tmp; } Vec3 dir2 = dir1 % plane.normal; Vec3 point = plane.distance * plane.normal; return Plane3 ( point * M, (point + dir2) * M, (point + dir1) * M ); } template Plane3 operator- (const Plane3 &plane) { return Plane3(-plane.normal,-plane.distance); } } // namespace Imath #endif