/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/highgui/highgui.hpp" using namespace std; using namespace cv; const string IMAGE_TSUKUBA = "/features2d/tsukuba.png"; const string IMAGE_BIKES = "/detectors_descriptors_evaluation/images_datasets/bikes/img1.png"; #define SHOW_DEBUG_LOG 0 static Mat generateHomography(float angle) { // angle - rotation around Oz in degrees float angleRadian = static_cast(angle * CV_PI / 180); Mat H = Mat::eye(3, 3, CV_32FC1); H.at(0,0) = H.at(1,1) = std::cos(angleRadian); H.at(0,1) = -std::sin(angleRadian); H.at(1,0) = std::sin(angleRadian); return H; } static Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask) { // angle - rotation around Oz in degrees float diag = std::sqrt(static_cast(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows)); Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up LUShift.at(0,2) = static_cast(-srcImage.cols/2); LUShift.at(1,2) = static_cast(-srcImage.rows/2); Mat RDShift = Mat::eye(3, 3, CV_32FC1); // right down RDShift.at(0,2) = diag/2; RDShift.at(1,2) = diag/2; Size sz(cvRound(diag), cvRound(diag)); Mat srcMask(srcImage.size(), CV_8UC1, Scalar(255)); Mat H = RDShift * generateHomography(angle) * LUShift; warpPerspective(srcImage, dstImage, H, sz); warpPerspective(srcMask, dstMask, H, sz); return H; } void rotateKeyPoints(const vector& src, const Mat& H, float angle, vector& dst) { // suppose that H is rotation given from rotateImage() and angle has value passed to rotateImage() vector srcCenters, dstCenters; KeyPoint::convert(src, srcCenters); perspectiveTransform(srcCenters, dstCenters, H); dst = src; for(size_t i = 0; i < dst.size(); i++) { dst[i].pt = dstCenters[i]; float dstAngle = src[i].angle + angle; if(dstAngle >= 360.f) dstAngle -= 360.f; dst[i].angle = dstAngle; } } void scaleKeyPoints(const vector& src, vector& dst, float scale) { dst.resize(src.size()); for(size_t i = 0; i < src.size(); i++) dst[i] = KeyPoint(src[i].pt.x * scale, src[i].pt.y * scale, src[i].size * scale, src[i].angle); } static float calcCirclesIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1) { float c = static_cast(norm(p0 - p1)), sqr_c = c * c; float sqr_r0 = r0 * r0; float sqr_r1 = r1 * r1; if(r0 + r1 <= c) return 0; float minR = std::min(r0, r1); float maxR = std::max(r0, r1); if(c + minR <= maxR) return static_cast(CV_PI * minR * minR); float cos_halfA0 = (sqr_r0 + sqr_c - sqr_r1) / (2 * r0 * c); float cos_halfA1 = (sqr_r1 + sqr_c - sqr_r0) / (2 * r1 * c); float A0 = 2 * acos(cos_halfA0); float A1 = 2 * acos(cos_halfA1); return 0.5f * sqr_r0 * (A0 - sin(A0)) + 0.5f * sqr_r1 * (A1 - sin(A1)); } static float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r1) { float intersectArea = calcCirclesIntersectArea(p0, r0, p1, r1); float unionArea = static_cast(CV_PI) * (r0 * r0 + r1 * r1) - intersectArea; return intersectArea / unionArea; } static void matchKeyPoints(const vector& keypoints0, const Mat& H, const vector& keypoints1, vector& matches) { vector points0; KeyPoint::convert(keypoints0, points0); Mat points0t; if(H.empty()) points0t = Mat(points0); else perspectiveTransform(Mat(points0), points0t, H); matches.clear(); vector usedMask(keypoints1.size(), 0); for(int i0 = 0; i0 < static_cast(keypoints0.size()); i0++) { int nearestPointIndex = -1; float maxIntersectRatio = 0.f; const float r0 = 0.5f * keypoints0[i0].size; for(size_t i1 = 0; i1 < keypoints1.size(); i1++) { if(nearestPointIndex >= 0 && usedMask[i1]) continue; float r1 = 0.5f * keypoints1[i1].size; float intersectRatio = calcIntersectRatio(points0t.at(i0), r0, keypoints1[i1].pt, r1); if(intersectRatio > maxIntersectRatio) { maxIntersectRatio = intersectRatio; nearestPointIndex = static_cast(i1); } } matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio)); if(nearestPointIndex >= 0) usedMask[nearestPointIndex] = 1; } } class DetectorRotationInvarianceTest : public cvtest::BaseTest { public: DetectorRotationInvarianceTest(const Ptr& _featureDetector, float _minKeyPointMatchesRatio, float _minAngleInliersRatio) : featureDetector(_featureDetector), minKeyPointMatchesRatio(_minKeyPointMatchesRatio), minAngleInliersRatio(_minAngleInliersRatio) { CV_Assert(!featureDetector.empty()); } protected: void run(int) { const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA; // Read test data Mat image0 = imread(imageFilename), image1, mask1; if(image0.empty()) { ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } vector keypoints0; featureDetector->detect(image0, keypoints0); if(keypoints0.size() < 15) CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n"); const int maxAngle = 360, angleStep = 15; for(int angle = 0; angle < maxAngle; angle += angleStep) { Mat H = rotateImage(image0, static_cast(angle), image1, mask1); vector keypoints1; featureDetector->detect(image1, keypoints1, mask1); vector matches; matchKeyPoints(keypoints0, H, keypoints1, matches); int angleInliersCount = 0; const float minIntersectRatio = 0.5f; int keyPointMatchesCount = 0; for(size_t m = 0; m < matches.size(); m++) { if(matches[m].distance < minIntersectRatio) continue; keyPointMatchesCount++; // Check does this inlier have consistent angles const float maxAngleDiff = 15.f; // grad float angle0 = keypoints0[matches[m].queryIdx].angle; float angle1 = keypoints1[matches[m].trainIdx].angle; if(angle0 == -1 || angle1 == -1) CV_Error(CV_StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n"); CV_Assert(angle0 >= 0.f && angle0 < 360.f); CV_Assert(angle1 >= 0.f && angle1 < 360.f); float rotAngle0 = angle0 + angle; if(rotAngle0 >= 360.f) rotAngle0 -= 360.f; float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1); angleDiff = std::min(angleDiff, static_cast(360.f - angleDiff)); CV_Assert(angleDiff >= 0.f); bool isAngleCorrect = angleDiff < maxAngleDiff; if(isAngleCorrect) angleInliersCount++; } float keyPointMatchesRatio = static_cast(keyPointMatchesCount) / keypoints0.size(); if(keyPointMatchesRatio < minKeyPointMatchesRatio) { ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n", keyPointMatchesRatio, minKeyPointMatchesRatio); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } if(keyPointMatchesCount) { float angleInliersRatio = static_cast(angleInliersCount) / keyPointMatchesCount; if(angleInliersRatio < minAngleInliersRatio) { ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n", angleInliersRatio, minAngleInliersRatio); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } } #if SHOW_DEBUG_LOG std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio << " - angleInliersRatio " << static_cast(angleInliersCount) / keyPointMatchesCount << std::endl; #endif } ts->set_failed_test_info( cvtest::TS::OK ); } Ptr featureDetector; float minKeyPointMatchesRatio; float minAngleInliersRatio; }; class DescriptorRotationInvarianceTest : public cvtest::BaseTest { public: DescriptorRotationInvarianceTest(const Ptr& _featureDetector, const Ptr& _descriptorExtractor, int _normType, float _minDescInliersRatio) : featureDetector(_featureDetector), descriptorExtractor(_descriptorExtractor), normType(_normType), minDescInliersRatio(_minDescInliersRatio) { CV_Assert(!featureDetector.empty()); CV_Assert(!descriptorExtractor.empty()); } protected: void run(int) { const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA; // Read test data Mat image0 = imread(imageFilename), image1, mask1; if(image0.empty()) { ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } vector keypoints0; Mat descriptors0; featureDetector->detect(image0, keypoints0); if(keypoints0.size() < 15) CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n"); descriptorExtractor->compute(image0, keypoints0, descriptors0); BFMatcher bfmatcher(normType); const float minIntersectRatio = 0.5f; const int maxAngle = 360, angleStep = 15; for(int angle = 0; angle < maxAngle; angle += angleStep) { Mat H = rotateImage(image0, static_cast(angle), image1, mask1); vector keypoints1; rotateKeyPoints(keypoints0, H, static_cast(angle), keypoints1); Mat descriptors1; descriptorExtractor->compute(image1, keypoints1, descriptors1); vector descMatches; bfmatcher.match(descriptors0, descriptors1, descMatches); int descInliersCount = 0; for(size_t m = 0; m < descMatches.size(); m++) { const KeyPoint& transformed_p0 = keypoints1[descMatches[m].queryIdx]; const KeyPoint& p1 = keypoints1[descMatches[m].trainIdx]; if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size, p1.pt, 0.5f * p1.size) >= minIntersectRatio) { descInliersCount++; } } float descInliersRatio = static_cast(descInliersCount) / keypoints0.size(); if(descInliersRatio < minDescInliersRatio) { ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n", descInliersRatio, minDescInliersRatio); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } #if SHOW_DEBUG_LOG std::cout << "descInliersRatio " << static_cast(descInliersCount) / keypoints0.size() << std::endl; #endif } ts->set_failed_test_info( cvtest::TS::OK ); } Ptr featureDetector; Ptr descriptorExtractor; int normType; float minDescInliersRatio; }; class DetectorScaleInvarianceTest : public cvtest::BaseTest { public: DetectorScaleInvarianceTest(const Ptr& _featureDetector, float _minKeyPointMatchesRatio, float _minScaleInliersRatio) : featureDetector(_featureDetector), minKeyPointMatchesRatio(_minKeyPointMatchesRatio), minScaleInliersRatio(_minScaleInliersRatio) { CV_Assert(!featureDetector.empty()); } protected: void run(int) { const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES; // Read test data Mat image0 = imread(imageFilename); if(image0.empty()) { ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } vector keypoints0; featureDetector->detect(image0, keypoints0); if(keypoints0.size() < 15) CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n"); for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++) { float scale = 1.f + scaleIdx * 0.5f; Mat image1; resize(image0, image1, Size(), 1./scale, 1./scale); vector keypoints1, osiKeypoints1; // osi - original size image featureDetector->detect(image1, keypoints1); if(keypoints1.size() < 15) CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n"); if(keypoints1.size() > keypoints0.size()) { ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. " "It gives more points count in an image of the smaller size.\n" "original size (%d, %d), keypoints count = %d\n" "reduced size (%d, %d), keypoints count = %d\n", image0.cols, image0.rows, keypoints0.size(), image1.cols, image1.rows, keypoints1.size()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return; } scaleKeyPoints(keypoints1, osiKeypoints1, scale); vector matches; // image1 is query image (it's reduced image0) // image0 is train image matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches); const float minIntersectRatio = 0.5f; int keyPointMatchesCount = 0; int scaleInliersCount = 0; for(size_t m = 0; m < matches.size(); m++) { if(matches[m].distance < minIntersectRatio) continue; keyPointMatchesCount++; // Check does this inlier have consistent sizes const float maxSizeDiff = 0.8f;//0.9f; // grad float size0 = keypoints0[matches[m].trainIdx].size; float size1 = osiKeypoints1[matches[m].queryIdx].size; CV_Assert(size0 > 0 && size1 > 0); if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1)) scaleInliersCount++; } float keyPointMatchesRatio = static_cast(keyPointMatchesCount) / keypoints1.size(); if(keyPointMatchesRatio < minKeyPointMatchesRatio) { ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n", keyPointMatchesRatio, minKeyPointMatchesRatio); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } if(keyPointMatchesCount) { float scaleInliersRatio = static_cast(scaleInliersCount) / keyPointMatchesCount; if(scaleInliersRatio < minScaleInliersRatio) { ts->printf(cvtest::TS::LOG, "Incorrect scaleInliersRatio: curr = %f, min = %f.\n", scaleInliersRatio, minScaleInliersRatio); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } } #if SHOW_DEBUG_LOG std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio << " - scaleInliersRatio " << static_cast(scaleInliersCount) / keyPointMatchesCount << std::endl; #endif } ts->set_failed_test_info( cvtest::TS::OK ); } Ptr featureDetector; float minKeyPointMatchesRatio; float minScaleInliersRatio; }; class DescriptorScaleInvarianceTest : public cvtest::BaseTest { public: DescriptorScaleInvarianceTest(const Ptr& _featureDetector, const Ptr& _descriptorExtractor, int _normType, float _minDescInliersRatio) : featureDetector(_featureDetector), descriptorExtractor(_descriptorExtractor), normType(_normType), minDescInliersRatio(_minDescInliersRatio) { CV_Assert(!featureDetector.empty()); CV_Assert(!descriptorExtractor.empty()); } protected: void run(int) { const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES; // Read test data Mat image0 = imread(imageFilename); if(image0.empty()) { ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } vector keypoints0; featureDetector->detect(image0, keypoints0); if(keypoints0.size() < 15) CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n"); Mat descriptors0; descriptorExtractor->compute(image0, keypoints0, descriptors0); BFMatcher bfmatcher(normType); for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++) { float scale = 1.f + scaleIdx * 0.5f; Mat image1; resize(image0, image1, Size(), 1./scale, 1./scale); vector keypoints1; scaleKeyPoints(keypoints0, keypoints1, 1.0f/scale); Mat descriptors1; descriptorExtractor->compute(image1, keypoints1, descriptors1); vector descMatches; bfmatcher.match(descriptors0, descriptors1, descMatches); const float minIntersectRatio = 0.5f; int descInliersCount = 0; for(size_t m = 0; m < descMatches.size(); m++) { const KeyPoint& transformed_p0 = keypoints0[descMatches[m].queryIdx]; const KeyPoint& p1 = keypoints0[descMatches[m].trainIdx]; if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size, p1.pt, 0.5f * p1.size) >= minIntersectRatio) { descInliersCount++; } } float descInliersRatio = static_cast(descInliersCount) / keypoints0.size(); if(descInliersRatio < minDescInliersRatio) { ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n", descInliersRatio, minDescInliersRatio); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } #if SHOW_DEBUG_LOG std::cout << "descInliersRatio " << static_cast(descInliersCount) / keypoints0.size() << std::endl; #endif } ts->set_failed_test_info( cvtest::TS::OK ); } Ptr featureDetector; Ptr descriptorExtractor; int normType; float minKeyPointMatchesRatio; float minDescInliersRatio; }; // Tests registration /* * Detector's rotation invariance check */ TEST(Features2d_RotationInvariance_Detector_BRISK, regression) { DetectorRotationInvarianceTest test(Algorithm::create("Feature2D.BRISK"), 0.32f, 0.76f); test.safe_run(); } TEST(Features2d_RotationInvariance_Detector_ORB, regression) { DetectorRotationInvarianceTest test(Algorithm::create("Feature2D.ORB"), 0.47f, 0.76f); test.safe_run(); } /* * Descriptors's rotation invariance check */ TEST(Features2d_RotationInvariance_Descriptor_BRISK, regression) { DescriptorRotationInvarianceTest test(Algorithm::create("Feature2D.BRISK"), Algorithm::create("Feature2D.BRISK"), NORM_HAMMING, 0.99f); test.safe_run(); } TEST(Features2d_RotationInvariance_Descriptor_ORB, regression) { DescriptorRotationInvarianceTest test(Algorithm::create("Feature2D.ORB"), Algorithm::create("Feature2D.ORB"), NORM_HAMMING, 0.99f); test.safe_run(); } //TEST(Features2d_RotationInvariance_Descriptor_FREAK, regression) //{ // DescriptorRotationInvarianceTest test(Algorithm::create("Feature2D.ORB"), // Algorithm::create("Feature2D.FREAK"), // NORM_HAMMING, // 0.f); // test.safe_run(); //} /* * Detector's scale invariance check */ TEST(Features2d_ScaleInvariance_Detector_BRISK, regression) { DetectorScaleInvarianceTest test(Algorithm::create("Feature2D.BRISK"), 0.08f, 0.49f); test.safe_run(); } //TEST(Features2d_ScaleInvariance_Detector_ORB, regression) //{ // DetectorScaleInvarianceTest test(Algorithm::create("Feature2D.ORB"), // 0.22f, // 0.83f); // test.safe_run(); //} /* * Descriptor's scale invariance check */ //TEST(Features2d_ScaleInvariance_Descriptor_BRISK, regression) //{ // DescriptorScaleInvarianceTest test(Algorithm::create("Feature2D.BRISK"), // Algorithm::create("Feature2D.BRISK"), // NORM_HAMMING, // 0.99f); // test.safe_run(); //} //TEST(Features2d_ScaleInvariance_Descriptor_ORB, regression) //{ // DescriptorScaleInvarianceTest test(Algorithm::create("Feature2D.ORB"), // Algorithm::create("Feature2D.ORB"), // NORM_HAMMING, // 0.01f); // test.safe_run(); //} //TEST(Features2d_ScaleInvariance_Descriptor_FREAK, regression) //{ // DescriptorScaleInvarianceTest test(Algorithm::create("Feature2D.ORB"), // Algorithm::create("Feature2D.FREAK"), // NORM_HAMMING, // 0.01f); // test.safe_run(); //}