/* * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. * * NVIDIA Corporation and its licensors retain all intellectual * property and proprietary rights in and to this software and * related documentation and any modifications thereto. * Any use, reproduction, disclosure, or distribution of this * software and related documentation without an express license * agreement from NVIDIA Corporation is strictly prohibited. */ #include #include "TestRectStdDev.h" TestRectStdDev::TestRectStdDev(std::string testName, NCVTestSourceProvider &src, Ncv32u width, Ncv32u height, NcvRect32u rect, Ncv32f scaleFactor, NcvBool bTextureCache) : NCVTestProvider(testName), src(src), width(width), height(height), rect(rect), scaleFactor(scaleFactor), bTextureCache(bTextureCache) { } bool TestRectStdDev::toString(std::ofstream &strOut) { strOut << "width=" << width << std::endl; strOut << "height=" << height << std::endl; strOut << "rect=[" << rect.x << ", " << rect.y << ", " << rect.width << ", " << rect.height << "]\n"; strOut << "scaleFactor=" << scaleFactor << std::endl; strOut << "bTextureCache=" << bTextureCache << std::endl; return true; } bool TestRectStdDev::init() { return true; } bool TestRectStdDev::process() { NCVStatus ncvStat; bool rcode = false; Ncv32s _normWidth = (Ncv32s)this->width - this->rect.x - this->rect.width + 1; Ncv32s _normHeight = (Ncv32s)this->height - this->rect.y - this->rect.height + 1; if (_normWidth <= 0 || _normHeight <= 0) { return true; } Ncv32u normWidth = (Ncv32u)_normWidth; Ncv32u normHeight = (Ncv32u)_normHeight; NcvSize32u szNormRoi(normWidth, normHeight); Ncv32u widthII = this->width + 1; Ncv32u heightII = this->height + 1; Ncv32u widthSII = this->width + 1; Ncv32u heightSII = this->height + 1; NCVMatrixAlloc d_img(*this->allocatorGPU.get(), this->width, this->height); ncvAssertReturn(d_img.isMemAllocated(), false); NCVMatrixAlloc h_img(*this->allocatorCPU.get(), this->width, this->height); ncvAssertReturn(h_img.isMemAllocated(), false); NCVMatrixAlloc d_imgII(*this->allocatorGPU.get(), widthII, heightII); ncvAssertReturn(d_imgII.isMemAllocated(), false); NCVMatrixAlloc h_imgII(*this->allocatorCPU.get(), widthII, heightII); ncvAssertReturn(h_imgII.isMemAllocated(), false); NCVMatrixAlloc d_imgSII(*this->allocatorGPU.get(), widthSII, heightSII); ncvAssertReturn(d_imgSII.isMemAllocated(), false); NCVMatrixAlloc h_imgSII(*this->allocatorCPU.get(), widthSII, heightSII); ncvAssertReturn(h_imgSII.isMemAllocated(), false); NCVMatrixAlloc d_norm(*this->allocatorGPU.get(), normWidth, normHeight); ncvAssertReturn(d_norm.isMemAllocated(), false); NCVMatrixAlloc h_norm(*this->allocatorCPU.get(), normWidth, normHeight); ncvAssertReturn(h_norm.isMemAllocated(), false); NCVMatrixAlloc h_norm_d(*this->allocatorCPU.get(), normWidth, normHeight); ncvAssertReturn(h_norm_d.isMemAllocated(), false); Ncv32u bufSizeII, bufSizeSII; ncvStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &bufSizeII, this->devProp); ncvAssertReturn(NPPST_SUCCESS == ncvStat, false); ncvStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(this->width, this->height), &bufSizeSII, this->devProp); ncvAssertReturn(NPPST_SUCCESS == ncvStat, false); Ncv32u bufSize = bufSizeII > bufSizeSII ? bufSizeII : bufSizeSII; NCVVectorAlloc d_tmpBuf(*this->allocatorGPU.get(), bufSize); ncvAssertReturn(d_tmpBuf.isMemAllocated(), false); NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting()); NCV_SKIP_COND_BEGIN ncvAssertReturn(this->src.fill(h_img), false); ncvStat = h_img.copySolid(d_img, 0); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStIntegral_8u32u_C1R(d_img.ptr(), d_img.pitch(), d_imgII.ptr(), d_imgII.pitch(), NcvSize32u(this->width, this->height), d_tmpBuf.ptr(), bufSize, this->devProp); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStSqrIntegral_8u64u_C1R(d_img.ptr(), d_img.pitch(), d_imgSII.ptr(), d_imgSII.pitch(), NcvSize32u(this->width, this->height), d_tmpBuf.ptr(), bufSize, this->devProp); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStRectStdDev_32f_C1R(d_imgII.ptr(), d_imgII.pitch(), d_imgSII.ptr(), d_imgSII.pitch(), d_norm.ptr(), d_norm.pitch(), szNormRoi, this->rect, this->scaleFactor, this->bTextureCache); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = d_norm.copySolid(h_norm_d, 0); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStIntegral_8u32u_C1R_host(h_img.ptr(), h_img.pitch(), h_imgII.ptr(), h_imgII.pitch(), NcvSize32u(this->width, this->height)); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStSqrIntegral_8u64u_C1R_host(h_img.ptr(), h_img.pitch(), h_imgSII.ptr(), h_imgSII.pitch(), NcvSize32u(this->width, this->height)); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStRectStdDev_32f_C1R_host(h_imgII.ptr(), h_imgII.pitch(), h_imgSII.ptr(), h_imgSII.pitch(), h_norm.ptr(), h_norm.pitch(), szNormRoi, this->rect, this->scaleFactor); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); NCV_SKIP_COND_END //bit-to-bit check bool bLoopVirgin = true; NCV_SKIP_COND_BEGIN const Ncv64f relEPS = 0.005; for (Ncv32u i=0; bLoopVirgin && i < h_norm.height(); i++) { for (Ncv32u j=0; bLoopVirgin && j < h_norm.width(); j++) { Ncv64f absErr = fabs(h_norm.ptr()[h_norm.stride()*i+j] - h_norm_d.ptr()[h_norm_d.stride()*i+j]); Ncv64f relErr = absErr / h_norm.ptr()[h_norm.stride()*i+j]; if (relErr > relEPS) { bLoopVirgin = false; } } } NCV_SKIP_COND_END if (bLoopVirgin) { rcode = true; } return rcode; } bool TestRectStdDev::deinit() { return true; }