/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace std; class CV_TemplMatchTest : public cvtest::ArrayTest { public: CV_TemplMatchTest(); protected: int read_params( CvFileStorage* fs ); void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ); double get_success_error_level( int test_case_idx, int i, int j ); void run_func(); void prepare_to_validation( int ); int max_template_size; int method; bool test_cpp; }; CV_TemplMatchTest::CV_TemplMatchTest() { test_array[INPUT].push_back(NULL); test_array[INPUT].push_back(NULL); test_array[OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); element_wise_relative_error = false; max_template_size = 100; method = 0; test_cpp = false; } int CV_TemplMatchTest::read_params( CvFileStorage* fs ) { int code = cvtest::ArrayTest::read_params( fs ); if( code < 0 ) return code; max_template_size = cvReadInt( find_param( fs, "max_template_size" ), max_template_size ); max_template_size = cvtest::clipInt( max_template_size, 1, 100 ); return code; } void CV_TemplMatchTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ) { cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high ); int depth = CV_MAT_DEPTH(type); if( depth == CV_32F ) { low = Scalar::all(-10.); high = Scalar::all(10.); } } void CV_TemplMatchTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); int depth = cvtest::randInt(rng) % 2, cn = cvtest::randInt(rng) & 1 ? 3 : 1; cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); depth = depth == 0 ? CV_8U : CV_32F; types[INPUT][0] = types[INPUT][1] = CV_MAKETYPE(depth,cn); types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1; sizes[INPUT][1].width = cvtest::randInt(rng)%MIN(sizes[INPUT][1].width,max_template_size) + 1; sizes[INPUT][1].height = cvtest::randInt(rng)%MIN(sizes[INPUT][1].height,max_template_size) + 1; sizes[OUTPUT][0].width = sizes[INPUT][0].width - sizes[INPUT][1].width + 1; sizes[OUTPUT][0].height = sizes[INPUT][0].height - sizes[INPUT][1].height + 1; sizes[REF_OUTPUT][0] = sizes[OUTPUT][0]; method = cvtest::randInt(rng)%6; test_cpp = (cvtest::randInt(rng) & 256) == 0; } double CV_TemplMatchTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { if( test_mat[INPUT][1].depth() == CV_8U || (method >= CV_TM_CCOEFF && test_mat[INPUT][1].cols*test_mat[INPUT][1].rows <= 2) ) return 1e-2; else return 1e-3; } void CV_TemplMatchTest::run_func() { if(!test_cpp) cvMatchTemplate( test_array[INPUT][0], test_array[INPUT][1], test_array[OUTPUT][0], method ); else { cv::Mat _out = cv::cvarrToMat(test_array[OUTPUT][0]); cv::matchTemplate(cv::cvarrToMat(test_array[INPUT][0]), cv::cvarrToMat(test_array[INPUT][1]), _out, method); } } static void cvTsMatchTemplate( const CvMat* img, const CvMat* templ, CvMat* result, int method ) { int i, j, k, l; int depth = CV_MAT_DEPTH(img->type), cn = CV_MAT_CN(img->type); int width_n = templ->cols*cn, height = templ->rows; int a_step = img->step / CV_ELEM_SIZE(img->type & CV_MAT_DEPTH_MASK); int b_step = templ->step / CV_ELEM_SIZE(templ->type & CV_MAT_DEPTH_MASK); CvScalar b_mean, b_sdv; double b_denom = 1., b_sum2 = 0; int area = templ->rows*templ->cols; cvAvgSdv(templ, &b_mean, &b_sdv); for( i = 0; i < cn; i++ ) b_sum2 += (b_sdv.val[i]*b_sdv.val[i] + b_mean.val[i]*b_mean.val[i])*area; if( b_sdv.val[0]*b_sdv.val[0] + b_sdv.val[1]*b_sdv.val[1] + b_sdv.val[2]*b_sdv.val[2] + b_sdv.val[3]*b_sdv.val[3] < DBL_EPSILON && method == CV_TM_CCOEFF_NORMED ) { cvSet( result, cvScalarAll(1.) ); return; } if( method & 1 ) { b_denom = 0; if( method != CV_TM_CCOEFF_NORMED ) { b_denom = b_sum2; } else { for( i = 0; i < cn; i++ ) b_denom += b_sdv.val[i]*b_sdv.val[i]*area; } b_denom = sqrt(b_denom); if( b_denom == 0 ) b_denom = 1.; } assert( CV_TM_SQDIFF <= method && method <= CV_TM_CCOEFF_NORMED ); for( i = 0; i < result->rows; i++ ) { for( j = 0; j < result->cols; j++ ) { CvScalar a_sum = {{ 0, 0, 0, 0 }}, a_sum2 = {{ 0, 0, 0, 0 }}; CvScalar ccorr = {{ 0, 0, 0, 0 }}; double value = 0.; if( depth == CV_8U ) { const uchar* a = img->data.ptr + i*img->step + j*cn; const uchar* b = templ->data.ptr; if( cn == 1 || method < CV_TM_CCOEFF ) { for( k = 0; k < height; k++, a += a_step, b += b_step ) for( l = 0; l < width_n; l++ ) { ccorr.val[0] += a[l]*b[l]; a_sum.val[0] += a[l]; a_sum2.val[0] += a[l]*a[l]; } } else { for( k = 0; k < height; k++, a += a_step, b += b_step ) for( l = 0; l < width_n; l += 3 ) { ccorr.val[0] += a[l]*b[l]; ccorr.val[1] += a[l+1]*b[l+1]; ccorr.val[2] += a[l+2]*b[l+2]; a_sum.val[0] += a[l]; a_sum.val[1] += a[l+1]; a_sum.val[2] += a[l+2]; a_sum2.val[0] += a[l]*a[l]; a_sum2.val[1] += a[l+1]*a[l+1]; a_sum2.val[2] += a[l+2]*a[l+2]; } } } else { const float* a = (const float*)(img->data.ptr + i*img->step) + j*cn; const float* b = (const float*)templ->data.ptr; if( cn == 1 || method < CV_TM_CCOEFF ) { for( k = 0; k < height; k++, a += a_step, b += b_step ) for( l = 0; l < width_n; l++ ) { ccorr.val[0] += a[l]*b[l]; a_sum.val[0] += a[l]; a_sum2.val[0] += a[l]*a[l]; } } else { for( k = 0; k < height; k++, a += a_step, b += b_step ) for( l = 0; l < width_n; l += 3 ) { ccorr.val[0] += a[l]*b[l]; ccorr.val[1] += a[l+1]*b[l+1]; ccorr.val[2] += a[l+2]*b[l+2]; a_sum.val[0] += a[l]; a_sum.val[1] += a[l+1]; a_sum.val[2] += a[l+2]; a_sum2.val[0] += a[l]*a[l]; a_sum2.val[1] += a[l+1]*a[l+1]; a_sum2.val[2] += a[l+2]*a[l+2]; } } } switch( method ) { case CV_TM_CCORR: case CV_TM_CCORR_NORMED: value = ccorr.val[0]; break; case CV_TM_SQDIFF: case CV_TM_SQDIFF_NORMED: value = (a_sum2.val[0] + b_sum2 - 2*ccorr.val[0]); break; default: value = (ccorr.val[0] - a_sum.val[0]*b_mean.val[0]+ ccorr.val[1] - a_sum.val[1]*b_mean.val[1]+ ccorr.val[2] - a_sum.val[2]*b_mean.val[2]); } if( method & 1 ) { double denom; // calc denominator if( method != CV_TM_CCOEFF_NORMED ) { denom = a_sum2.val[0] + a_sum2.val[1] + a_sum2.val[2]; } else { denom = a_sum2.val[0] - (a_sum.val[0]*a_sum.val[0])/area; denom += a_sum2.val[1] - (a_sum.val[1]*a_sum.val[1])/area; denom += a_sum2.val[2] - (a_sum.val[2]*a_sum.val[2])/area; } denom = sqrt(MAX(denom,0))*b_denom; if( fabs(value) < denom ) value /= denom; else if( fabs(value) < denom*1.125 ) value = value > 0 ? 1 : -1; else value = method != CV_TM_SQDIFF_NORMED ? 0 : 1; } ((float*)(result->data.ptr + result->step*i))[j] = (float)value; } } } void CV_TemplMatchTest::prepare_to_validation( int /*test_case_idx*/ ) { CvMat _input = test_mat[INPUT][0], _templ = test_mat[INPUT][1]; CvMat _output = test_mat[REF_OUTPUT][0]; cvTsMatchTemplate( &_input, &_templ, &_output, method ); //if( ts->get_current_test_info()->test_case_idx == 0 ) /*{ CvFileStorage* fs = cvOpenFileStorage( "_match_template.yml", 0, CV_STORAGE_WRITE ); cvWrite( fs, "image", &test_mat[INPUT][0] ); cvWrite( fs, "template", &test_mat[INPUT][1] ); cvWrite( fs, "ref", &test_mat[REF_OUTPUT][0] ); cvWrite( fs, "opencv", &test_mat[OUTPUT][0] ); cvWriteInt( fs, "method", method ); cvReleaseFileStorage( &fs ); }*/ if( method >= CV_TM_CCOEFF ) { // avoid numerical stability problems in singular cases (when the results are near to 0) const double delta = 10.; test_mat[REF_OUTPUT][0] += Scalar::all(delta); test_mat[OUTPUT][0] += Scalar::all(delta); } } TEST(Imgproc_MatchTemplate, accuracy) { CV_TemplMatchTest test; test.safe_run(); }