from __future__ import print_function from abc import ABCMeta, abstractmethod import numpy as np import sys import argparse import time from imagenet_cls_test_alexnet import CaffeModel, DnnCaffeModel try: import cv2 as cv except ImportError: raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, ' 'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)') def get_metrics(conf_mat): pix_accuracy = np.trace(conf_mat) / np.sum(conf_mat) t = np.sum(conf_mat, 1) num_cl = np.count_nonzero(t) assert num_cl mean_accuracy = np.sum(np.nan_to_num(np.divide(np.diagonal(conf_mat), t))) / num_cl col_sum = np.sum(conf_mat, 0) mean_iou = np.sum( np.nan_to_num(np.divide(np.diagonal(conf_mat), (t + col_sum - np.diagonal(conf_mat))))) / num_cl return pix_accuracy, mean_accuracy, mean_iou def eval_segm_result(net_out): assert type(net_out) is np.ndarray assert len(net_out.shape) == 4 channels_dim = 1 y_dim = channels_dim + 1 x_dim = y_dim + 1 res = np.zeros(net_out.shape).astype(int) for i in range(net_out.shape[y_dim]): for j in range(net_out.shape[x_dim]): max_ch = np.argmax(net_out[..., i, j]) res[0, max_ch, i, j] = 1 return res def get_conf_mat(gt, prob): assert type(gt) is np.ndarray assert type(prob) is np.ndarray conf_mat = np.zeros((gt.shape[0], gt.shape[0])) for ch_gt in range(conf_mat.shape[0]): gt_channel = gt[ch_gt, ...] for ch_pr in range(conf_mat.shape[1]): prob_channel = prob[ch_pr, ...] conf_mat[ch_gt][ch_pr] = np.count_nonzero(np.multiply(gt_channel, prob_channel)) return conf_mat class MeanChannelsPreproc: def __init__(self): pass @staticmethod def process(img): image_data = np.array(img).transpose(2, 0, 1).astype(np.float32) mean = np.ones(image_data.shape) mean[0] *= 104 mean[1] *= 117 mean[2] *= 123 image_data -= mean image_data = np.expand_dims(image_data, 0) return image_data class DatasetImageFetch(object): __metaclass__ = ABCMeta data_prepoc = object @abstractmethod def __iter__(self): pass @abstractmethod def next(self): pass @staticmethod def pix_to_c(pix): return pix[0] * 256 * 256 + pix[1] * 256 + pix[2] @staticmethod def color_to_gt(color_img, colors): num_classes = len(colors) gt = np.zeros((num_classes, color_img.shape[0], color_img.shape[1])).astype(int) for img_y in range(color_img.shape[0]): for img_x in range(color_img.shape[1]): c = DatasetImageFetch.pix_to_c(color_img[img_y][img_x]) if c in colors: cls = colors.index(c) gt[cls][img_y][img_x] = 1 return gt class PASCALDataFetch(DatasetImageFetch): img_dir = '' segm_dir = '' names = [] colors = [] i = 0 def __init__(self, img_dir, segm_dir, names_file, segm_cls_colors_file, preproc): self.img_dir = img_dir self.segm_dir = segm_dir self.colors = self.read_colors(segm_cls_colors_file) self.data_prepoc = preproc self.i = 0 with open(names_file) as f: for l in f.readlines(): self.names.append(l.rstrip()) @staticmethod def read_colors(img_classes_file): result = [] with open(img_classes_file) as f: for l in f.readlines(): color = np.array(map(int, l.split()[1:])) result.append(DatasetImageFetch.pix_to_c(color)) return result def __iter__(self): return self def next(self): if self.i < len(self.names): name = self.names[self.i] self.i += 1 segm_file = self.segm_dir + name + ".png" img_file = self.img_dir + name + ".jpg" gt = self.color_to_gt(cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1], self.colors) img = self.data_prepoc.process(cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1]) return img, gt else: self.i = 0 raise StopIteration def get_num_classes(self): return len(self.colors) class SemSegmEvaluation: log = sys.stdout def __init__(self, log_path,): self.log = open(log_path, 'w') def process(self, frameworks, data_fetcher): samples_handled = 0 conf_mats = [np.zeros((data_fetcher.get_num_classes(), data_fetcher.get_num_classes())) for i in range(len(frameworks))] blobs_l1_diff = [0] * len(frameworks) blobs_l1_diff_count = [0] * len(frameworks) blobs_l_inf_diff = [sys.float_info.min] * len(frameworks) inference_time = [0.0] * len(frameworks) for in_blob, gt in data_fetcher: frameworks_out = [] samples_handled += 1 for i in range(len(frameworks)): start = time.time() out = frameworks[i].get_output(in_blob) end = time.time() segm = eval_segm_result(out) conf_mats[i] += get_conf_mat(gt, segm[0]) frameworks_out.append(out) inference_time[i] += end - start pix_acc, mean_acc, miou = get_metrics(conf_mats[i]) name = frameworks[i].get_name() print(samples_handled, 'Pixel accuracy, %s:' % name, 100 * pix_acc, file=self.log) print(samples_handled, 'Mean accuracy, %s:' % name, 100 * mean_acc, file=self.log) print(samples_handled, 'Mean IOU, %s:' % name, 100 * miou, file=self.log) print("Inference time, ms ", \ frameworks[i].get_name(), inference_time[i] / samples_handled * 1000, file=self.log) for i in range(1, len(frameworks)): log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':' diff = np.abs(frameworks_out[0] - frameworks_out[i]) l1_diff = np.sum(diff) / diff.size print(samples_handled, "L1 difference", log_str, l1_diff, file=self.log) blobs_l1_diff[i] += l1_diff blobs_l1_diff_count[i] += 1 if np.max(diff) > blobs_l_inf_diff[i]: blobs_l_inf_diff[i] = np.max(diff) print(samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i], file=self.log) self.log.flush() for i in range(1, len(blobs_l1_diff)): log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':' print('Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i], file=self.log) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--imgs_dir", help="path to PASCAL VOC 2012 images dir, data/VOC2012/JPEGImages") parser.add_argument("--segm_dir", help="path to PASCAL VOC 2012 segmentation dir, data/VOC2012/SegmentationClass/") parser.add_argument("--val_names", help="path to file with validation set image names, download it here: " "https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/data/pascal/seg11valid.txt") parser.add_argument("--cls_file", help="path to file with colors for classes, download it here: " "https://github.com/opencv/opencv/blob/4.x/samples/data/dnn/pascal-classes.txt") parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: " "https://github.com/opencv/opencv/blob/4.x/samples/data/dnn/fcn8s-heavy-pascal.prototxt") parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: " "http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel") parser.add_argument("--log", help="path to logging file") parser.add_argument("--in_blob", help="name for input blob", default='data') parser.add_argument("--out_blob", help="name for output blob", default='score') args = parser.parse_args() prep = MeanChannelsPreproc() df = PASCALDataFetch(args.imgs_dir, args.segm_dir, args.val_names, args.cls_file, prep) fw = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob, True), DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)] segm_eval = SemSegmEvaluation(args.log) segm_eval.process(fw, df)