// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html namespace opencv_test { namespace { /****************************************************************************************\ * Regression tests for descriptor extractors. * \****************************************************************************************/ static void double_image(Mat& src, Mat& dst) { dst.create(Size(src.cols*2, src.rows*2), src.type()); Mat H = Mat::zeros(2, 3, CV_32F); H.at(0, 0) = 0.5f; H.at(1, 1) = 0.5f; cv::warpAffine(src, dst, H, dst.size(), INTER_LINEAR | WARP_INVERSE_MAP, BORDER_REFLECT); } static Mat prepare_img(bool rows_indexed) { int rows = 5; int columns = 5; Mat img(rows, columns, CV_32F); for (int i = 0; i < rows; i++) { for (int j = 0; j < columns; j++) { if (rows_indexed) { img.at(i, j) = (float)i; } else { img.at(i, j) = (float)j; } } } return img; } static void writeMatInBin( const Mat& mat, const string& filename ) { FILE* f = fopen( filename.c_str(), "wb"); if( f ) { CV_Assert(4 == sizeof(int)); int type = mat.type(); fwrite( (void*)&mat.rows, sizeof(int), 1, f ); fwrite( (void*)&mat.cols, sizeof(int), 1, f ); fwrite( (void*)&type, sizeof(int), 1, f ); int dataSize = (int)(mat.step * mat.rows); fwrite( (void*)&dataSize, sizeof(int), 1, f ); fwrite( (void*)mat.ptr(), 1, dataSize, f ); fclose(f); } } static Mat readMatFromBin( const string& filename ) { FILE* f = fopen( filename.c_str(), "rb" ); if( f ) { CV_Assert(4 == sizeof(int)); int rows, cols, type, dataSize; size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f ); size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f ); size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f ); size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f ); CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1); int step = dataSize / rows / CV_ELEM_SIZE(type); CV_Assert(step >= cols); Mat returnMat = Mat(rows, step, type).colRange(0, cols); size_t elements_read = fread( returnMat.ptr(), 1, dataSize, f ); CV_Assert(elements_read == (size_t)(dataSize)); fclose(f); return returnMat; } return Mat(); } template class CV_DescriptorExtractorTest : public cvtest::BaseTest { public: typedef typename Distance::ValueType ValueType; typedef typename Distance::ResultType DistanceType; CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr& _dextractor, Distance d = Distance(), Ptr _detector = Ptr()): name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) , detector(_detector) {} ~CV_DescriptorExtractorTest() { } protected: virtual void createDescriptorExtractor() {} void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors ) { if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() ) { ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } CV_Assert( DataType::type == validDescriptors.type() ); int dimension = validDescriptors.cols; DistanceType curMaxDist = 0; size_t exact_count = 0, failed_count = 0; for( int y = 0; y < validDescriptors.rows; y++ ) { DistanceType dist = distance( validDescriptors.ptr(y), calcDescriptors.ptr(y), dimension ); if (dist == 0) exact_count++; if( dist > curMaxDist ) { if (dist > maxDist) failed_count++; curMaxDist = dist; } #if 0 if (dist > 0) { std::cout << "i=" << y << " fail_count=" << failed_count << " dist=" << dist << std::endl; std::cout << "valid: " << validDescriptors.row(y) << std::endl; std::cout << " calc: " << calcDescriptors.row(y) << std::endl; } #endif } float exact_percents = (100 * (float)exact_count / validDescriptors.rows); float failed_percents = (100 * (float)failed_count / validDescriptors.rows); std::stringstream ss; ss << "Exact count (dist == 0): " << exact_count << " (" << (int)exact_percents << "%)" << std::endl << "Failed count (dist > " << maxDist << "): " << failed_count << " (" << (int)failed_percents << "%)" << std::endl << "Max distance between valid and computed descriptors (" << validDescriptors.size() << "): " << curMaxDist; EXPECT_LE(failed_percents, 20.0f); std::cout << ss.str() << std::endl; } void emptyDataTest() { assert( dextractor ); // One image. Mat image; vector keypoints; Mat descriptors; try { dextractor->compute( image, keypoints, descriptors ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } RNG rng; image = cvtest::randomMat(rng, Size(50, 50), CV_8UC3, 0, 255, false); try { dextractor->compute( image, keypoints, descriptors ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } image = prepare_img(false); Mat dbl; try { double_image(image, dbl); Mat downsized_back(dbl.rows/2, dbl.cols/2, CV_32F); resize(dbl, downsized_back, Size(dbl.cols/2, dbl.rows/2), 0, 0, INTER_NEAREST); cv::Mat diff = (image != downsized_back); ASSERT_EQ(0, cv::norm(image, downsized_back, NORM_INF)); } catch(...) { ts->printf( cvtest::TS::LOG, "double_image() must not generate exception (1).\n"); ts->printf( cvtest::TS::LOG, "double_image() when downsized back by NEAREST must generate the same original image (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } // Several images. vector images; vector > keypointsCollection; vector descriptorsCollection; try { dextractor->compute( images, keypointsCollection, descriptorsCollection ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } } void regressionTest() { assert( dextractor ); // Read the test image. string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; Mat img = imread( imgFilename ); if( img.empty() ) { ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } const std::string keypoints_filename = string(ts->get_data_path()) + (detector.empty() ? (FEATURES2D_DIR + "/" + std::string("keypoints.xml.gz")) : (DESCRIPTOR_DIR + "/" + name + "_keypoints.xml.gz")); FileStorage fs(keypoints_filename, FileStorage::READ); vector keypoints; EXPECT_TRUE(fs.isOpened()) << "Keypoint testdata is missing. Re-computing and re-writing keypoints testdata..."; if (!fs.isOpened()) { fs.open(keypoints_filename, FileStorage::WRITE); ASSERT_TRUE(fs.isOpened()) << "File for writing keypoints can not be opened."; if (detector.empty()) { Ptr fd = ORB::create(); fd->detect(img, keypoints); } else { detector->detect(img, keypoints); } write(fs, "keypoints", keypoints); fs.release(); } else { read(fs.getFirstTopLevelNode(), keypoints); fs.release(); } if(!detector.empty()) { vector calcKeypoints; detector->detect(img, calcKeypoints); // TODO validate received keypoints int diff = abs((int)calcKeypoints.size() - (int)keypoints.size()); if (diff > 0) { std::cout << "Keypoints difference: " << diff << std::endl; EXPECT_LE(diff, (int)(keypoints.size() * 0.03f)); } } ASSERT_FALSE(keypoints.empty()); { Mat calcDescriptors; double t = (double)getTickCount(); dextractor->compute(img, keypoints, calcDescriptors); t = getTickCount() - t; ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)getTickFrequency()*1000.)/calcDescriptors.rows); if (calcDescriptors.rows != (int)keypoints.size()) { ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" ); ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() ); ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } if (calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType()) { ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" ); ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() ); ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols ); ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() ); ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } // TODO read and write descriptor extractor parameters and check them Mat validDescriptors = readDescriptors(); EXPECT_FALSE(validDescriptors.empty()) << "Descriptors testdata is missing. Re-writing descriptors testdata..."; if (!validDescriptors.empty()) { compareDescriptors(validDescriptors, calcDescriptors); } else { ASSERT_TRUE(writeDescriptors(calcDescriptors)) << "Descriptors can not be written."; } } } void run(int) { createDescriptorExtractor(); if( !dextractor ) { ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } emptyDataTest(); regressionTest(); ts->set_failed_test_info( cvtest::TS::OK ); } virtual Mat readDescriptors() { Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); return res; } virtual bool writeDescriptors( Mat& descs ) { writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); return true; } string name; const DistanceType maxDist; Ptr dextractor; Distance distance; Ptr detector; private: CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; } }; }} // namespace