#include "opencv2/core/core.hpp" #include "opencv2/core/internal.hpp" #include "HOGfeatures.h" #include "cascadeclassifier.h" using namespace std; using namespace cv; CvHOGFeatureParams::CvHOGFeatureParams() { maxCatCount = 0; name = HOGF_NAME; featSize = N_BINS * N_CELLS; } void CvHOGEvaluator::init(const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize) { CV_Assert( _maxSampleCount > 0); int cols = (_winSize.width + 1) * (_winSize.height + 1); for (int bin = 0; bin < N_BINS; bin++) { hist.push_back(Mat(_maxSampleCount, cols, CV_32FC1)); } normSum.create( (int)_maxSampleCount, cols, CV_32FC1 ); CvFeatureEvaluator::init( _featureParams, _maxSampleCount, _winSize ); } void CvHOGEvaluator::setImage(const Mat &img, uchar clsLabel, int idx) { CV_DbgAssert( !hist.empty()); CvFeatureEvaluator::setImage( img, clsLabel, idx ); vector integralHist; for (int bin = 0; bin < N_BINS; bin++) { integralHist.push_back( Mat(winSize.height + 1, winSize.width + 1, hist[bin].type(), hist[bin].ptr((int)idx)) ); } Mat integralNorm(winSize.height + 1, winSize.width + 1, normSum.type(), normSum.ptr((int)idx)); integralHistogram(img, integralHist, integralNorm, (int)N_BINS); } //void CvHOGEvaluator::writeFeatures( FileStorage &fs, const Mat& featureMap ) const //{ // _writeFeatures( features, fs, featureMap ); //} void CvHOGEvaluator::writeFeatures( FileStorage &fs, const Mat& featureMap ) const { int featIdx; int componentIdx; const Mat_& featureMap_ = (const Mat_&)featureMap; fs << FEATURES << "["; for ( int fi = 0; fi < featureMap.cols; fi++ ) if ( featureMap_(0, fi) >= 0 ) { fs << "{"; featIdx = fi / getFeatureSize(); componentIdx = fi % getFeatureSize(); features[featIdx].write( fs, componentIdx ); fs << "}"; } fs << "]"; } void CvHOGEvaluator::generateFeatures() { int offset = winSize.width + 1; Size blockStep; int x, y, t, w, h; for (t = 8; t <= winSize.width/2; t+=8) //t = size of a cell. blocksize = 4*cellSize { blockStep = Size(4,4); w = 2*t; //width of a block h = 2*t; //height of a block for (x = 0; x <= winSize.width - w; x += blockStep.width) { for (y = 0; y <= winSize.height - h; y += blockStep.height) { features.push_back(Feature(offset, x, y, t, t)); } } w = 2*t; h = 4*t; for (x = 0; x <= winSize.width - w; x += blockStep.width) { for (y = 0; y <= winSize.height - h; y += blockStep.height) { features.push_back(Feature(offset, x, y, t, 2*t)); } } w = 4*t; h = 2*t; for (x = 0; x <= winSize.width - w; x += blockStep.width) { for (y = 0; y <= winSize.height - h; y += blockStep.height) { features.push_back(Feature(offset, x, y, 2*t, t)); } } } numFeatures = (int)features.size(); } CvHOGEvaluator::Feature::Feature() { for (int i = 0; i < N_CELLS; i++) { rect[i] = Rect(0, 0, 0, 0); } } CvHOGEvaluator::Feature::Feature( int offset, int x, int y, int cellW, int cellH ) { rect[0] = Rect(x, y, cellW, cellH); //cell0 rect[1] = Rect(x+cellW, y, cellW, cellH); //cell1 rect[2] = Rect(x, y+cellH, cellW, cellH); //cell2 rect[3] = Rect(x+cellW, y+cellH, cellW, cellH); //cell3 for (int i = 0; i < N_CELLS; i++) { CV_SUM_OFFSETS(fastRect[i].p0, fastRect[i].p1, fastRect[i].p2, fastRect[i].p3, rect[i], offset); } } void CvHOGEvaluator::Feature::write(FileStorage &fs) const { fs << CC_RECTS << "["; for( int i = 0; i < N_CELLS; i++ ) { fs << "[:" << rect[i].x << rect[i].y << rect[i].width << rect[i].height << "]"; } fs << "]"; } //cell and bin idx writing //void CvHOGEvaluator::Feature::write(FileStorage &fs, int varIdx) const //{ // int featComponent = varIdx % (N_CELLS * N_BINS); // int cellIdx = featComponent / N_BINS; // int binIdx = featComponent % N_BINS; // // fs << CC_RECTS << "[:" << rect[cellIdx].x << rect[cellIdx].y << // rect[cellIdx].width << rect[cellIdx].height << binIdx << "]"; //} //cell[0] and featComponent idx writing. By cell[0] it's possible to recover all block //All block is nessesary for block normalization void CvHOGEvaluator::Feature::write(FileStorage &fs, int featComponentIdx) const { fs << CC_RECT << "[:" << rect[0].x << rect[0].y << rect[0].width << rect[0].height << featComponentIdx << "]"; } void CvHOGEvaluator::integralHistogram(const Mat &img, vector &histogram, Mat &norm, int nbins) const { CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 ); int x, y, binIdx; Size gradSize(img.size()); Size histSize(histogram[0].size()); Mat grad(gradSize, CV_32F); Mat qangle(gradSize, CV_8U); AutoBuffer mapbuf(gradSize.width + gradSize.height + 4); int* xmap = (int*)mapbuf + 1; int* ymap = xmap + gradSize.width + 2; const int borderType = (int)BORDER_REPLICATE; for( x = -1; x < gradSize.width + 1; x++ ) xmap[x] = borderInterpolate(x, gradSize.width, borderType); for( y = -1; y < gradSize.height + 1; y++ ) ymap[y] = borderInterpolate(y, gradSize.height, borderType); int width = gradSize.width; AutoBuffer _dbuf(width*4); float* dbuf = _dbuf; Mat Dx(1, width, CV_32F, dbuf); Mat Dy(1, width, CV_32F, dbuf + width); Mat Mag(1, width, CV_32F, dbuf + width*2); Mat Angle(1, width, CV_32F, dbuf + width*3); float angleScale = (float)(nbins/CV_PI); for( y = 0; y < gradSize.height; y++ ) { const uchar* currPtr = img.data + img.step*ymap[y]; const uchar* prevPtr = img.data + img.step*ymap[y-1]; const uchar* nextPtr = img.data + img.step*ymap[y+1]; float* gradPtr = (float*)grad.ptr(y); uchar* qanglePtr = (uchar*)qangle.ptr(y); for( x = 0; x < width; x++ ) { dbuf[x] = (float)(currPtr[xmap[x+1]] - currPtr[xmap[x-1]]); dbuf[width + x] = (float)(nextPtr[xmap[x]] - prevPtr[xmap[x]]); } cartToPolar( Dx, Dy, Mag, Angle, false ); for( x = 0; x < width; x++ ) { float mag = dbuf[x+width*2]; float angle = dbuf[x+width*3]; angle = angle*angleScale - 0.5f; int bidx = cvFloor(angle); angle -= bidx; if( bidx < 0 ) bidx += nbins; else if( bidx >= nbins ) bidx -= nbins; qanglePtr[x] = (uchar)bidx; gradPtr[x] = mag; } } integral(grad, norm, grad.depth()); float* histBuf; const float* magBuf; const uchar* binsBuf; int binsStep = (int)( qangle.step / sizeof(uchar) ); int histStep = (int)( histogram[0].step / sizeof(float) ); int magStep = (int)( grad.step / sizeof(float) ); for( binIdx = 0; binIdx < nbins; binIdx++ ) { histBuf = (float*)histogram[binIdx].data; magBuf = (const float*)grad.data; binsBuf = (const uchar*)qangle.data; memset( histBuf, 0, histSize.width * sizeof(histBuf[0]) ); histBuf += histStep + 1; for( y = 0; y < qangle.rows; y++ ) { histBuf[-1] = 0.f; float strSum = 0.f; for( x = 0; x < qangle.cols; x++ ) { if( binsBuf[x] == binIdx ) strSum += magBuf[x]; histBuf[x] = histBuf[-histStep + x] + strSum; } histBuf += histStep; binsBuf += binsStep; magBuf += magStep; } } }