In some situations the last value was missing from the discrete theta
values. Now, the last value is chosen such that it is close to the
user-provided maximum theta, while the distance to pi remains always
at least theta_step/2. This should avoid duplicate detections.
A better way would probably be to use max_theta as is and adjust the
resolution (theta_step) instead, such that the discretization would
always be uniform (in a circular sense) when full angle range is used.
[GSoC] New universal intrinsic backend for RVV
* Add new rvv backend (partially implemented).
* Modify the framework of Universal Intrinsic.
* Add CV_SIMD macro guards to current UI code.
* Use vlanes() instead of nlanes.
* Modify the UI test.
* Enable the new RVV (scalable) backend.
* Remove whitespace.
* Rename and some others modify.
* Update intrin.hpp but still not work on AVX/SSE
* Update conditional compilation macros.
* Use static variable for vlanes.
* Use max_nlanes for array defining.
It's not clear how ranges argument should be used in the overload of
calcHist that accepts std::vector. The main overload uses array of
arrays there, while std::vector overload uses a plain array. The code
interprets the vector as a flattened array and rebuilds array of arrays
from it. This is not obvious interpretation, so documentation has been
added to explain the expected usage.
Replaced sprintf with safer snprintf
* Straightforward replacement of sprintf with safer snprintf
* Trickier replacement of sprintf with safer snprintf
Some functions were changed to take another parameter: the size of the buffer, so that they can pass that size on to snprintf.
Fixed out-of-bounds read in parallel version of ippGaussianBlur()
* Fixed out-of-memory read in parallel version of ippGaussianBlur()
* Fixed check
* Revert changes in CMakeLists.txt
* better accuracy of _rotatedRectangleIntersection
instead of just migrating to double-precision (which would work), some computations are scaled by a factor that depends on the length of the smallest vectors.
There is a better accuracy even with floats, so this is certainly better for very sensitive cases
* Update intersection.cpp
use L2SQR norm to tune the numeric scale
* Update intersection.cpp
adapt samePointEps with L2 norm
* Update intersection.cpp
move comment
* Update intersection.cpp
fix wrong numericalScalingFactor usage
* added tests
* fixed warnings returned by buildbot
* modifications suggested by reviewer
renaming numericalScaleFctor to normalizationScale
refactor some computations
more "const"
* modifications as suggested by reviewer
Optimize cv::applyColorMap() for simple case
* Optimize cv::applyColorMap() for simple case
PR for 21640
For regular cv::Mat CV_8UC1 src, applying the colormap is simpler than calling the cv::LUT() mechanism.
* add support for src as CV_8UC3
src as CV_8UC3 is handled with a BGR2GRAY conversion, the same optimized code being used afterwards
* code style
rely on cv::Mat.ptr() to index data
* Move new implementation to ColorMap::operator()
Changes as suggested by reviewer
* style
improvements suggsted by reviewer
* typo
* tune parallel work
* better usage of parallel_for_
use nstripes parameter of parallel_for_
assume _lut is continuous to bring faster pixel indexing
optimize src/dst access by contiguous rows of pixels
do not locally copy the LUT any more, it is no more relevant with the new optimizations
Fixed threshold(THRESH_TOZERO) at imgproc(IPP)
* Fixed#16085: imgproc(IPP): wrong result from threshold(THRESH_TOZERO)
* 1. Added test cases with float where all bits of mantissa equal 1, min and max float as inputs
2. Used nextafterf instead of cast to hex
* Used float value in test instead of hex and casts
* Changed input value in test
When computing:
t1 = (bayer[1] + bayer[bayer_step] + bayer[bayer_step+2] + bayer[bayer_step*2+1])*G2Y;
there is a T (unsigned short or char) multiplied by an int which can overflow.
Then again, it is stored to t1 which is unsigned so the overflow disappears.
Keeping all unsigned is safer.
* Fix integer overflow in cv::Luv2RGBinteger::process.
For LL=49, uu=205, vv=23, we end up with x=7373056 and y=458
which overflows y*x.
* imgproc(test): adjust test parameters to cover SIMD code