dnn: add shared fastNorm kernel for mvn, instance norm and layer norm #24409
Relates https://github.com/opencv/opencv/pull/24378#issuecomment-1756906570
TODO:
- [x] add fastNorm
- [x] refactor layer norm with fastNorm
- [x] refactor mvn with fastNorm
- [ ] add onnx mvn in importer (in a new PR?)
- [ ] refactor instance norm with fastNorm (in another PR https://github.com/opencv/opencv/pull/24378, need to merge this one first though)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Native ONNX to Inference Engine backend #21066Resolves#21052
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV
- [x] The PR is proposed to proper branch
- [x] There is reference to original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
- [ ] The feature is well documented and sample code can be built with the project CMake
GSoC Add ONNX Support for GatherElements #24092
Merge with: https://github.com/opencv/opencv_extra/pull/1082
Adds support to the ONNX operator GatherElements [operator docs](https://github.com/onnx/onnx/blob/main/docs/Operators.md#GatherElements)
Added tests to opencv_extra at pull request https://github.com/opencv/opencv_extra/pull/1082
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add Support for Einsum Layer #24037
### This PR adding support for [Einsum Layer](https://pytorch.org/docs/stable/generated/torch.einsum.html) (in progress).
This PR is currently not to be merged but only reviewed. Test cases are located in [#1090](https://github.com/opencv/opencv_extra/pull/1090)RP in OpenCV extra
**DONE**:
- [x] 2-5D GMM support added
- [x] Matrix transpose support added
- [x] Reduction type comupte 'ij->j'
- [x] 2nd shape computation - during forward
**Next PRs**:
- [ ] Broadcasting reduction "...ii ->...i"
- [ ] Add lazy shape deduction. "...ij, ...jk->...ik"
- [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik")
- [ ] Add support for CUDA backend
- [ ] BatchWiseMultiply optimize
**Later in 5.x version (requires support for 1D matrices)**:
- [ ] Add 1D vector multiplication support
- [ ] Inter product "i, i" (problems with 1D shapes)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* first commit
* turned C from input to constant; force C constant in impl; better handling 0d/1d cases
* integrate with gemm from ficus nn
* fix const inputs
* adjust threshold for int8 tryQuantize
* adjust threshold for int8 quantized 2
* support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet
* add gemm perf against innerproduct
* add perf tests for innerproduct with bias
* fix perf
* add memset
* renamings for next step
* add dedicated perf gemm
* add innerproduct in perf_gemm
* remove gemm and innerproduct perf tests from perf_layer
* add perf cases for vit sizes; prepack constants
* remove batched gemm; fix wrong trans; optimize KC
* remove prepacking for const A; several fixes for const B prepacking
* add todos and gemm expression
* add optimized branch for avx/avx2
* trigger build
* update macros and signature
* update signature
* fix macro
* fix bugs for neon aarch64 & x64
* add backends: cuda, cann, inf_ngraph and vkcom
* fix cuda backend
* test commit for cuda
* test cuda backend
* remove debug message from cuda backend
* use cpu dispatcher
* fix neon macro undef in dispatcher
* fix dispatcher
* fix inner kernel for neon aarch64
* fix compiling issue on armv7; try fixing accuracy issue on other platforms
* broadcast C with beta multiplied; improve func namings
* fix bug for avx and avx2
* put all platform-specific kernels in dispatcher
* fix typos
* attempt to fix compile issues on x64
* run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon
* fix typo
* quick fix: add macros for pack4
* quick fix: use vmlaq_f32 for armv7
* quick fix for missing macro of fast gemm pack f32 4
* disable conformance tests when optimized branches are not supported
* disable perf tests when optimized branches are not supported
* decouple cv_try_neon and cv_neon_aarch64
* drop googlenet_2023; add fastGemmBatched
* fix step in fastGemmBatched
* cpu: fix initialization ofb; gpu: support batch
* quick followup fix for cuda
* add default kernels
* quick followup fix to avoid macro redef
* optmized kernels for lasx
* resolve mis-alignment; remove comments
* tune performance for x64 platform
* tune performance for neon aarch64
* tune for armv7
* comment time consuming tests
* quick follow-up fix
Build Java without ANT #23724
### Pull Request Readiness Checklist
Enables a path of building Java bindings without ANT
* Able to build OpenCV JAR and Docs without ANT
```
-- Java:
-- ant: NO
-- JNI: /usr/lib/jvm/default-java/include /usr/lib/jvm/default-java/include/linux /usr/lib/jvm/default-java/include
-- Java wrappers: YES
-- Java tests: NO
```
* Possible to build OpenCV JAR without ANT but tests still require ANT
**Merge with**: https://github.com/opencv/opencv_contrib/pull/3502
Notes:
- Use `OPENCV_JAVA_IGNORE_ANT=1` to force "Java" flow for building Java bindings
- Java tests still require Apache ANT
- JAR doesn't include `.java` source code files.
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
DNN: Add New API blobFromImageParam #22750
The purpose of this PR:
1. Add new API `blobFromImageParam` to extend `blobFromImage` API. It can support the different data layout (NCHW or NHWC), and letter_box.
2. ~~`blobFromImage` can output `CV_16F`~~
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn: Support more operators in CANN backend #23401
This PR adds the support of following layers:
- [x] Sub
- [x] PRelu
- [x] DeConv
- [x] Also warn users if backend is switched back to default if some of the layers are not supported.
- [ ] [Dropped] LSTM: some hacks (adding layers) were introduced which makes it even harder to build the graph for CANN backend.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Related issue: https://github.com/opencv/opencv_zoo/issues/136
Features added:
- Support operators with multiple output: ONNX Split.
- Support Slice without steps.
Bugs fixed:
- Wrong settings in ClipByValue (Relu6).
- Wrong calculation of pads in convolution layer (It is wrong generally but only fixed specifically for CANN for now).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: add layer normalization for vision transformers
* add layer norm onnx parser, impl and tests
* add onnx graph simplifier for layer norm expanded
* handle the case when constants are of type Initializer
* add test case for layer norm expanded with initializers
* use CV_Assert & CV_CheckType in place of CV_Assert_N; use forward_fallback for OCL_FP16
* use const ref / ref in parameters of invoker::run; extract inner const if from nested loop; use size_t in place of ull
* template hasBias
* remove trailing whitespace
* use pointer parameter with null check; move normSize division & mean_square division outside of loop; use std::max to ensure positive value before std::sqrt
* refactor implementation, optimize parallel_for
* disable layer norm expanded
* remove the removal of layer norm optional outputs
* cann backend impl v1
* cann backend impl v2: use opencv parsers to build models for cann
* adjust fc according to the new transA and transB
* put cann net in cann backend node and reuse forwardLayer
* use fork() to create a child process and compile cann model
* remove legacy code
* remove debug code
* fall bcak to CPU backend if there is one layer not supoorted by CANN backend
* fix netInput forward
DNN: let Quant and Dequant of ONNX_importer support the Constant input.
* let Quant and Dequant support the Constant input.
* fix negative value of axis.
Reimplementation of Element-wise layers with broadcasting support
* init
* semi-working initial version
* add small_vector
* wip
* remove smallvec
* add nary function
* replace auto with Mat in lambda expr used in transform
* uncomment asserts
* autobuffer shape_buf & step_buf
* fix a missing bracket
* fixed a missing addLayer in parseElementWise
* solve one-dimensional broadcast
* remove pre_broadcast_transform for the case of two constants; fix missing constBlobsExtraInfo when addConstant is called
* one autobuffer for step & shape
* temporal fix for the missing original dimension information
* fix parseUnsqueeze when it gets a 1d tensor constant
* support sum/mean/min/max with only one input
* reuse old code to handle cases of two non-constant inputs
* add condition to handle div & mul of two non-constant inputs
* use || instead of or
* remove trainling spaces
* enlarge buf in binary_forward to contain other buffer
* use autobuffer in nary_forward
* generate data randomly and add more cases for perf
* add op and, or & xor
* update perf_dnn
* remove some comments
* remove legacy; add two ONNX conformance tests in filter
* move from cpu_denylist to all_denylist
* adjust parsing for inputs>=2
Co-authored-by: fengyuentau <yuantao.feng@opencv.org.cn>
Add per_tensor_quantize to int8 quantize
* add per_tensor_quantize to dnn int8 module.
* change api flag from perTensor to perChannel, and recognize quantize type and onnx importer.
* change the default to hpp
* add apply softmax option to ClassificationModel
* remove default arguments of ClassificationModel::setSoftMax()
* fix build for python
* fix docs warning for setSoftMax()
* add impl for ClassficationModel()
* fix failed build for docs by trailing whitespace
* move to implement classify() to ClassificationModel_Impl
* move to implement softmax() to ClassificationModel_Impl
* remove softmax from public method in ClassificationModel