Example: img of size 10x10 and templ of size 11x9.
In subsequent code this will results in either width or height of
corrSize to be zero (0).
Line 261 will call crossCorr which will then have a zero size of either
blocksize.width or blocksize.height resulting in a division by zero
crach in lines 137 or 138.
This version is supposed to work on all problems (please, let me know if
this is not so), but is not optimized yet in terms of numerical
stability and performance. Bland's rule is implemented as well, so
algorithm is supposed to allow no cycling. Additional check for multiple
solutions is added (in case of multiple solutions algorithm returns an
appropriate return code of 1 and returns arbitrary optimal solution).
Finally, now we have 5 tests.
Before Thursday we have 4 directions that can be tackled in parallel:
*) Prepare the pull request!
*) Make the code more clear and readable (refactoring)
*) Wrap the core solveLP() procedure in OOP-style interface
*) Test solveLP on non-trivial tests (possibly test against
http://www.coin-or.org/Clp/)
[NSRunLoop currentRunLoop] is not the same as in the main thread.
see
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/F
oundation/Classes/nsrunloop_Class/Reference/Reference.html
"If no input sources or timers are attached to the run loop, this
method exits immediately"
The old code caused grabFrame() to return immediately if the capture
was not done in the main thread.
This code works correctly, even in secondary threads, provided that all
capture functions are called in the *same* thread
What we have now corresponds to "formal simplex algorithm", described in
Cormen's "Intro to Algorithms". It will work *only* if the initial
problem has (0,0,0,...,0) as feasible solution (consequently, it will
work unpredictably if problem was unfeasible or did not have zero-vector as
feasible solution). Moreover, it might cycle.
TODO (first priority)
1. Implement initialize_simplex() procedure, that shall check for
feasibility and generate initial feasible solution. (in particular, code
should pass all 4 tests implemented at the moment)
2. Implement Bland's rule to avoid cycling.
3. Make the code more clear.
4. Implement several non-trivial tests (??) and check algorithm against
them. Debug if necessary.
TODO (second priority)
1. Concentrate on stability and speed (make difficult tests)
Previously the function requires Info::Impl implicitly. A call will create
new Context this function which is not intended.
The properties are now moved to global scope to fix this issue.
Added LPSolver class together with two nested classes: LPFunction and
LPConstraints. These represent function to be maximized and constraints
imposed respectively. They are implementations of interfaces Function
and Constraints respectively (latter ones are nested classes of Solver
interface, which is generic interface for all optimization algorithms to
be implemented within this project).
The next step is to implement the simplex algorithm! First, we shall
implement it for the case of constraints of the form Ax<=b and x>=0.
Then, we shall extend the sets of problems that can be handled by the
conversion to the one we've handled already. Finally, we shale
concentrate on numerical stability and efficiency.
Video i/o tests enabled for media foundation;
Negative stride support added to VideoCapture;
Error handling improved, dead lock in case of playback error fixed;
Some code refacotring done.