dnn: add layer normalization for vision transformers
* add layer norm onnx parser, impl and tests
* add onnx graph simplifier for layer norm expanded
* handle the case when constants are of type Initializer
* add test case for layer norm expanded with initializers
* use CV_Assert & CV_CheckType in place of CV_Assert_N; use forward_fallback for OCL_FP16
* use const ref / ref in parameters of invoker::run; extract inner const if from nested loop; use size_t in place of ull
* template hasBias
* remove trailing whitespace
* use pointer parameter with null check; move normSize division & mean_square division outside of loop; use std::max to ensure positive value before std::sqrt
* refactor implementation, optimize parallel_for
* disable layer norm expanded
* remove the removal of layer norm optional outputs
DNN: reduce the memory used in convolution layer
* reduce the memory in winograd and disabel the test when usage memory is larger than 2gb.
* remove VERY_LOG tag
Reimplementation of Element-wise layers with broadcasting support
* init
* semi-working initial version
* add small_vector
* wip
* remove smallvec
* add nary function
* replace auto with Mat in lambda expr used in transform
* uncomment asserts
* autobuffer shape_buf & step_buf
* fix a missing bracket
* fixed a missing addLayer in parseElementWise
* solve one-dimensional broadcast
* remove pre_broadcast_transform for the case of two constants; fix missing constBlobsExtraInfo when addConstant is called
* one autobuffer for step & shape
* temporal fix for the missing original dimension information
* fix parseUnsqueeze when it gets a 1d tensor constant
* support sum/mean/min/max with only one input
* reuse old code to handle cases of two non-constant inputs
* add condition to handle div & mul of two non-constant inputs
* use || instead of or
* remove trainling spaces
* enlarge buf in binary_forward to contain other buffer
* use autobuffer in nary_forward
* generate data randomly and add more cases for perf
* add op and, or & xor
* update perf_dnn
* remove some comments
* remove legacy; add two ONNX conformance tests in filter
* move from cpu_denylist to all_denylist
* adjust parsing for inputs>=2
Co-authored-by: fengyuentau <yuantao.feng@opencv.org.cn>
* dnn: LSTM optimisation
This uses the AVX-optimised fastGEMM1T for matrix multiplications where available, instead of the standard cv::gemm.
fastGEMM1T is already used by the fully-connected layer. This commit involves two minor modifications:
- Use unaligned access. I don't believe this involves any performance hit in on modern CPUs (Nehalem and Bulldozer onwards) in the case where the address is actually aligned.
- Allow for weight matrices where the number of columns is not a multiple of 8.
I have not enabled AVX-512 as I don't have an AVX-512 CPU to test on.
* Fix warning about initialisation order
* Remove C++11 syntax
* Fix build when AVX(2) is not available
In this case the CV_TRY_X macros are defined to 0, rather than being undefined.
* Minor changes as requested:
- Don't check hardware support for AVX(2) when dispatch is disabled for these
- Add braces
* Fix out-of-bounds access in fully connected layer
The old tail handling in fastGEMM1T implicitly rounded vecsize up to the next multiple of 8, and the fully connected layer implements padding up to the next multiple of 8 to cope with this. The new tail handling does not round the vecsize upwards like this but it does require that the vecsize is at least 8. To adapt to the new tail handling, the fully connected layer now rounds vecsize itself at the same time as adding the padding(which makes more sense anyway).
This also means that the fully connected layer always passes a vecsize of at least 8 to fastGEMM1T, which fixes the out-of-bounds access problems.
* Improve tail mask handling
- Use static array for generating tail masks (as requested)
- Apply tail mask to the weights as well as the input vectors to prevent spurious propagation of NaNs/Infs
* Revert whitespace change
* Improve readability of conditions for using AVX
* dnn(lstm): minor coding style changes, replaced left aligned load
Add support for Conv1D on OpenCV backend
* Add support for Conv1D on OpenCV backend
* disable tests on other targets/backends
* Fix formatting
* Restore comment
* Remove unnecessary flag and fix test logic
* Fix perf test
* fix braces
* Fix indentation, assert check and remove unnecessary condition
* Remove unnecessary changes
* Add test cases for variable weights and bias
* dnn(conv): fallback on OpenCV+CPU instead of failures
* coding style
* Fix precision in tests for MyriadX
* Fix ONNX tests
* Add output range in ONNX tests
* Skip tests on Myriad OpenVINO 2018R5
* Add detect MyriadX
* Add detect MyriadX on OpenVINO R5
* Skip tests on Myriad next version of OpenVINO
* dnn(ie): VPU type from environment variable
* dnn(test): validate VPU type
* dnn(test): update DLIE test skip conditions
* Add HPX backend for OpenCV implementation
Adds hpx backend for cv::parallel_for_() calls respecting the nstripes chunking parameter. C++ code for the backend is added to modules/core/parallel.cpp. Also, the necessary changes to cmake files are introduced.
Backend can operate in 2 versions (selectable by cmake build option WITH_HPX_STARTSTOP): hpx (runtime always on) and hpx_startstop (start and stop the backend for each cv::parallel_for_() call)
* WIP: Conditionally include hpx_main.hpp to tests in core module
Header hpx_main.hpp is included to both core/perf/perf_main.cpp and core/test/test_main.cpp.
The changes to cmake files for linking hpx library to above mentioned test executalbles are proposed but have issues.
* Add coditional iclusion of hpx_main.hpp to cpp cpu modules
* Remove start/stop version of hpx backend
* Added ResizeBilinear op for tf
Combined ResizeNearestNeighbor and ResizeBilinear layers into Resize (with an interpolation param).
Minor changes to tf_importer and resize layer to save some code lines
Minor changes in init.cpp
Minor changes in tf_importer.cpp
* Replaced implementation of a custom ResizeBilinear layer to all layers
* Use Mat::ptr. Replace interpolation flags