Alexander Alekhin
bd396e1fd5
dnn(test): re-enable tests which works with OpenVINO 2021.4.x (3.4)
3 years ago
Alexander Alekhin
985aa0423d
dnn(test): update InferenceEngine tests
3 years ago
Alexander Alekhin
6797fd65a5
dnn(test): update tests for OpenVINO 2021.4
4 years ago
Aaron Greig
f59917bea1
Introduce relaxed accuracy thresholds for CL target in some dnn tests.
...
Partially addresses #9821
4 years ago
Alexander Alekhin
e56e4876e7
dnn(test): update tests for OpenVINO 2021.3
4 years ago
YashasSamaga
0f8ab0557e
enable fusion tests, update thresholds and fix missed eltwise fusions
4 years ago
Alexander Alekhin
6da05f7086
dnn(test): update tests for OpenVINO 2021.1
4 years ago
Tomoaki Teshima
48368dc9a1
loosen threshold for Mali
4 years ago
Dmitry Kurtaev
d8dea7896b
Merge pull request #16628 from dkurt:dnn_ngraph_custom_layers
...
* Custom layers with nGraph
* nGraph: multiple outputs from nodes
5 years ago
Alexander Alekhin
8ecfb59930
dnn(test): skip failed ngraph tests
5 years ago
Dmitry Kurtaev
8f1e36f7c1
Disable some tests for Myriad target of nGraph
...
Add lightweight IE hardware targets checks
nGraph: Concat with paddings
Enable more nGraph tests
Restore FP32->FP16 for GPU plugin of IE
try to fix buildbot
Use lightweight IE targets check only starts from R4
5 years ago
Yashas Samaga B L
1fac1421e5
Merge pull request #16010 from YashasSamaga:cuda4dnn-fp16-tests
...
* enable tests for DNN_TARGET_CUDA_FP16
* disable deconvolution tests
* disable shortcut tests
* fix typos and some minor changes
* dnn(test): skip CUDA FP16 test too (run_pool_max)
5 years ago
Lubov Batanina
7523c777c5
Merge pull request #15537 from l-bat:ngraph
...
* Support nGraph
* Fix resize
5 years ago
Yashas Samaga B L
613c12e590
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
...
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
5 years ago
Dmitry Kurtaev
e35fd463e7
Enable ENet with Inference Engine backend on CPU
5 years ago
Dmitry Kurtaev
6193e403e7
Enable some tests for 2019R2
5 years ago
Alexander Alekhin
894f208de3
dnn(test): replace SkipTestException with tags
6 years ago
Alexander Alekhin
13a782c039
test: fix usage of findDataFile()
...
misused 'optional' mode
6 years ago
Dmitry Kurtaev
eba696a41e
Merge pull request #14792 from dkurt:dnn_ie_min_version_r5
...
* Remove Inference Engine 2018R3 and 2018R4
* Fix 2018R5
6 years ago
Dmitry Kurtaev
9c0af1f675
Enable more deconvolution layer configurations with IE backend
6 years ago
Alexander Alekhin
e0841f3d6e
dnn(test-tags): add time / memory tags
6 years ago
Lubov Batanina
7d3d6bc4e2
Merge pull request #13932 from l-bat:MyriadX_master_dldt
...
* Fix precision in tests for MyriadX
* Fix ONNX tests
* Add output range in ONNX tests
* Skip tests on Myriad OpenVINO 2018R5
* Add detect MyriadX
* Add detect MyriadX on OpenVINO R5
* Skip tests on Myriad next version of OpenVINO
* dnn(ie): VPU type from environment variable
* dnn(test): validate VPU type
* dnn(test): update DLIE test skip conditions
6 years ago
Alexander Nesterov
74574dfae4
Added optimization fuse
6 years ago
Dmitry Kurtaev
ed710eaa1c
Make Inference Engine R3 as a minimal supported version
6 years ago
Liubov Batanina
183c0fcab1
Changed condition for resize and lrn layers
6 years ago
Liubov Batanina
6b4becfd03
Enabled tests on IE backend
6 years ago
Dmitry Kurtaev
f0ddf302b2
Move Inference Engine to new API
6 years ago
Dmitry Kurtaev
840c892abd
Batch normalization in training phase from Torch
6 years ago
Dmitry Kurtaev
59ce1d80a5
Fix dnn tests for Inference Engine R5
6 years ago
Dmitry Kurtaev
53f6198f27
Minor fixes in IE backend tests
6 years ago
Dmitry Kurtaev
b5c54e447c
Extra hyperparameters for Intel's Inference Engine layers
6 years ago
Dmitry Kurtaev
e7015f6ae8
Fix ENet test
6 years ago
Dmitry Kurtaev
58ac3e09da
Change default value of crop argument of blobFromImage from true to false
6 years ago
Vadim Pisarevsky
54279523a3
Merge pull request #12437 from vpisarev:avx2_fixes
...
* trying to fix the custom AVX2 builder test failures (false alarms)
* fixed compile error with CPU_BASELINE=AVX2 on x86; raised tolerance thresholds in a couple of tests
* fixed compile error with CPU_BASELINE=AVX2 on x86; raised tolerance thresholds in a couple of tests
* fixed compile error with CPU_BASELINE=AVX2 on x86; raised tolerance thresholds in a couple of tests
* seemingly disabled false alarm warning in surf.cpp; increased tolerance thresholds in the tests for SolvePnP and in DNN/ENet
6 years ago
Dmitry Kurtaev
d486204a0d
Merge pull request #12264 from dkurt:dnn_remove_forward_method
...
* Remove a forward method in dnn::Layer
* Add a test
* Fix tests
* Mark multiple dnn::Layer::finalize methods as deprecated
* Replace back dnn's inputBlobs to vector of pointers
* Remove Layer::forward_fallback from CV_OCL_RUN scopes
6 years ago
Dmitry Kurtaev
6ec230480d
Enable Myriad tests with batch size > 1
6 years ago
Dmitry Kurtaev
50bceea038
Include preprocessing nodes to object detection TensorFlow networks ( #12211 )
...
* Include preprocessing nodes to object detection TensorFlow networks
* Enable more fusion
* faster_rcnn_resnet50_coco_2018_01_28 test
6 years ago
Dmitry Kurtaev
3e027df583
Enable more deep learning tests using Intel's Inference Engine backend
6 years ago
Dmitry Kurtaev
faa6c4e1e1
Faster-RCNN anf RFCN models on CPU using Intel's Inference Engine backend.
...
Enable Torch layers tests with Intel's Inference Engine backend.
7 years ago
Alexander Alekhin
452fa3011c
dnn(test): drop CV_ENUM for DNNBackend / DNNTarget
7 years ago
Dmitry Kurtaev
019c2f2115
Enable more deep learning tests
7 years ago
Dmitry Kurtaev
40b85c1cd9
Remove undocumented feature to retreive layers outputs by indices
7 years ago
Dmitry Kurtaev
2c291bc2fb
Enable FastNeuralStyle and OpenFace networks with IE backend
7 years ago
Dmitry Kurtaev
b781ac7346
Make Intel's Inference Engine backend is default if no preferable backend is specified.
7 years ago
Kuang Fangjun
9ae28415ec
fix doc.
7 years ago
Dmitry Kurtaev
4ec456f0a0
Custom layers for deep learning networks ( #11129 )
...
* Custom deep learning layers support
* Stack custom deep learning layers
7 years ago
Dmitry Kurtaev
818a91f4f7
Update Torch testdata
7 years ago
Dmitry Kurtaev
598039c0ed
Fix embedded Torch's nn.ConcatTable
7 years ago
Dmitry Kurtaev
0a61ebdd66
Replace DNNTarget and DNNBackend in tests
7 years ago
Dmitry Kurtaev
e1c3237532
Parametric OpenCL deep learning tests
7 years ago