G-API: oneVPL merge DX11 acceleration
* Merge DX11 initial
* Fold conditions row in MACRO in utils
* Inject DeviceSelector
* Turn on DeviceSelector in DX11
* Change sharedLock logic & Move FMT checking in FrameAdapter c-tor
* Move out NumSuggestFrame to configure params
* Drain file source fix
* Fix compilation
* Force zero initializetion of SharedLock
* Fix some compiler warnings
* Fix integer comparison warnings
* Fix integers in sample
* Integrate Demux
* Fix compilation
* Add predefined names for some CfgParam
* Trigger CI
* Fix MultithreadCtx bug, Add Dx11 GetBlobParam(), Get rif of ATL CComPtr
* Fix UT: remove unit test with deprecated video from opencv_extra
* Add creators for most usable CfgParam
* Eliminate some warnings
* Fix warning in GAPI_Assert
* Apply comments
* Add VPL wrapped header with MSVC pragma to get rid of global warning masking
Added CV_PROP_RW macro to keypoints
* Added CV_PROP_RW macro to keypoints
As outlined in the feature request in the issue https://github.com/opencv/opencv/issues/21171 : the keypoints field has been made parsable by the bindings.
* Added test for keypoints
Added test to check if the CV_PROP_RW macro added in the previous commit makes keypoints public and accessible through the python API.
Audio MSMF: added the ability to set sample per second
* Audio MSMF: added the ability to set sample per second
* changed the valid sampling rate check
* fixed docs
* add test
* fixed warning
* fixed error
* fixed error
Update RVV backend for using Clang.
* Update cmake file of clang.
* Modify the RVV optimization on DNN to adapt to clang.
* Modify intrin_rvv: Disable some existing types.
* Modify intrin_rvv: Reinterpret instead of load&cast.
* Modify intrin_rvv: Update load&store without cast.
* Modify intrin_rvv: Rename vfredsum to fredosum.
* Modify intrin_rvv: Rewrite Check all/any by using vpopc.
* Modify intrin_rvv: Use reinterpret instead of c-style casting.
* Remove all macros which is not used in v_reinterpret
* Rename vpopc to vcpop according to spec.
* Fix integer overflow in cv::Luv2RGBinteger::process.
For LL=49, uu=205, vv=23, we end up with x=7373056 and y=458
which overflows y*x.
* imgproc(test): adjust test parameters to cover SIMD code
* dnn: LSTM optimisation
This uses the AVX-optimised fastGEMM1T for matrix multiplications where available, instead of the standard cv::gemm.
fastGEMM1T is already used by the fully-connected layer. This commit involves two minor modifications:
- Use unaligned access. I don't believe this involves any performance hit in on modern CPUs (Nehalem and Bulldozer onwards) in the case where the address is actually aligned.
- Allow for weight matrices where the number of columns is not a multiple of 8.
I have not enabled AVX-512 as I don't have an AVX-512 CPU to test on.
* Fix warning about initialisation order
* Remove C++11 syntax
* Fix build when AVX(2) is not available
In this case the CV_TRY_X macros are defined to 0, rather than being undefined.
* Minor changes as requested:
- Don't check hardware support for AVX(2) when dispatch is disabled for these
- Add braces
* Fix out-of-bounds access in fully connected layer
The old tail handling in fastGEMM1T implicitly rounded vecsize up to the next multiple of 8, and the fully connected layer implements padding up to the next multiple of 8 to cope with this. The new tail handling does not round the vecsize upwards like this but it does require that the vecsize is at least 8. To adapt to the new tail handling, the fully connected layer now rounds vecsize itself at the same time as adding the padding(which makes more sense anyway).
This also means that the fully connected layer always passes a vecsize of at least 8 to fastGEMM1T, which fixes the out-of-bounds access problems.
* Improve tail mask handling
- Use static array for generating tail masks (as requested)
- Apply tail mask to the weights as well as the input vectors to prevent spurious propagation of NaNs/Infs
* Revert whitespace change
* Improve readability of conditions for using AVX
* dnn(lstm): minor coding style changes, replaced left aligned load
[G-API] Fix issue of getting 1D Mat out of RMat::View
* Fix issue of getting 1D Mat out of RMat::View
- added test
- fixed for standalone too (removed Assert(dims.empty()))
* Fixed asVeiw() function for standalone
* Put more detailed comment
Add capacity to Videocapture to return the extraData from FFmpeg when required
* Update rawMode to append any extra data recieved during the initial negotiation of an RTSP stream or during the parsing of an MPEG4 file header.
For h264[5] RTSP streams this ensures the parameter sets if available are always returned on the first call to grab()/read() and has two purposes:
1) To ensure the parameter sets are available even if they are not transmitted in band. This is common for axis ip camera's.
2) To allow callers of VideoCapture::grab()[read()] to write to split the raw stream over multiple files by appending the parameter sets to the begining of any new files.
For (1) there is no alternative, for (2) if the parameter sets were provided in band it would be possible to parse the raw bit stream and search for the parameter sets however that would be a lot of work when that information is already provided by FFMPEG.
For MPEG4 files this information is only suplied in the header and is required for decoding.
Two properties are also required to enable the raw encoded bitstream to be written to multiple files, these are;
1) an indicator as to whether the last frame was a key frame or not - each new file needs to start at a key frame to avoid storing unusable frame diffs,
2) the length in bytes of the paramater sets contained in the last frame - required to split the paramater sets from the frame without having to parse the stream. Any call to VideoCapture::get(CAP_PROP_LF_PARAM_SET_LEN) returning a number greater than zero indicates the presense of a parameter set at the begining of the raw bitstream.
* Adjust test data to account for extraData
* Address warning.
* Change added property names and remove paramater set start code check.
* Output extra data on calls to retrieve instead of appending to the first packet.
* Reverted old test case and added new one to evaluate new functionality.
* Add missing definition.
* Remove flag from legacy api.
Add property to determine if returning extra data is supported.
Always allow extra data to be returned on calls to cap.retrieve()
Update test case.
* Update condition which indicates CAP_PROP_CODEC_EXTRADATA_INDEX is not supported in test case.
* Include compatibility for windows dll if not updated.
Enforce existing return status convention.
* Fix return error and missing test constraints.
[GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN
* Add WebNN backend for OpenCV DNN Module
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Add WebNN head files into OpenCV 3rd partiy files
Create webnn.hpp
update cmake
Complete README and add OpenCVDetectWebNN.cmake file
add webnn.cpp
Modify webnn.cpp
Can successfully compile the codes for creating a MLContext
Update webnn.cpp
Update README.md
Update README.md
Update README.md
Update README.md
Update cmake files and
update README.md
Update OpenCVDetectWebNN.cmake and README.md
Update OpenCVDetectWebNN.cmake
Fix OpenCVDetectWebNN.cmake and update README.md
Add source webnn_cpp.cpp and libary libwebnn_proc.so
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
update dnn.cpp
update op_webnn
update op_webnn
Update op_webnn.hpp
update op_webnn.cpp & hpp
Update op_webnn.hpp
Update op_webnn
update the skeleton
Update op_webnn.cpp
Update op_webnn
Update op_webnn.cpp
Update op_webnn.cpp
Update op_webnn.hpp
update op_webnn
update op_webnn
Solved the problems of released variables.
Fixed the bugs in op_webnn.cpp
Implement op_webnn
Implement Relu by WebNN API
Update dnn.cpp for better test
Update elementwise_layers.cpp
Implement ReLU6
Update elementwise_layers.cpp
Implement SoftMax using WebNN API
Implement Reshape by WebNN API
Implement PermuteLayer by WebNN API
Implement PoolingLayer using WebNN API
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Implement poolingLayer by WebNN API and add more detailed logs
Update dnn.cpp
Update dnn.cpp
Remove redundant codes and add more logs for poolingLayer
Add more logs in the pooling layer implementation
Fix the indent issue and resolve the compiling issue
Fix the build problems
Fix the build issue
FIx the build issue
Update dnn.cpp
Update dnn.cpp
* Fix the build issue
* Implement BatchNorm Layer by WebNN API
* Update convolution_layer.cpp
This is a temporary file for Conv2d layer implementation
* Integrate some general functions into op_webnn.cpp&hpp
* Update const_layer.cpp
* Update convolution_layer.cpp
Still have some bugs that should be fixed.
* Update conv2d layer and fc layer
still have some problems to be fixed.
* update constLayer, conv layer, fc layer
There are still some bugs to be fixed.
* Fix the build issue
* Update concat_layer.cpp
Still have some bugs to be fixed.
* Update conv2d layer, fully connected layer and const layer
* Update convolution_layer.cpp
* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)
* Delete bib19450.aux
* Add WebNN backend for OpenCV DNN Module
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Add WebNN head files into OpenCV 3rd partiy files
Create webnn.hpp
update cmake
Complete README and add OpenCVDetectWebNN.cmake file
add webnn.cpp
Modify webnn.cpp
Can successfully compile the codes for creating a MLContext
Update webnn.cpp
Update README.md
Update README.md
Update README.md
Update README.md
Update cmake files and
update README.md
Update OpenCVDetectWebNN.cmake and README.md
Update OpenCVDetectWebNN.cmake
Fix OpenCVDetectWebNN.cmake and update README.md
Add source webnn_cpp.cpp and libary libwebnn_proc.so
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
Update dnn.cpp
update dnn.cpp
update op_webnn
update op_webnn
Update op_webnn.hpp
update op_webnn.cpp & hpp
Update op_webnn.hpp
Update op_webnn
update the skeleton
Update op_webnn.cpp
Update op_webnn
Update op_webnn.cpp
Update op_webnn.cpp
Update op_webnn.hpp
update op_webnn
update op_webnn
Solved the problems of released variables.
Fixed the bugs in op_webnn.cpp
Implement op_webnn
Implement Relu by WebNN API
Update dnn.cpp for better test
Update elementwise_layers.cpp
Implement ReLU6
Update elementwise_layers.cpp
Implement SoftMax using WebNN API
Implement Reshape by WebNN API
Implement PermuteLayer by WebNN API
Implement PoolingLayer using WebNN API
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Update pooling_layer.cpp
Implement poolingLayer by WebNN API and add more detailed logs
Update dnn.cpp
Update dnn.cpp
Remove redundant codes and add more logs for poolingLayer
Add more logs in the pooling layer implementation
Fix the indent issue and resolve the compiling issue
Fix the build problems
Fix the build issue
FIx the build issue
Update dnn.cpp
Update dnn.cpp
* Fix the build issue
* Implement BatchNorm Layer by WebNN API
* Update convolution_layer.cpp
This is a temporary file for Conv2d layer implementation
* Integrate some general functions into op_webnn.cpp&hpp
* Update const_layer.cpp
* Update convolution_layer.cpp
Still have some bugs that should be fixed.
* Update conv2d layer and fc layer
still have some problems to be fixed.
* update constLayer, conv layer, fc layer
There are still some bugs to be fixed.
* Update conv2d layer, fully connected layer and const layer
* Update convolution_layer.cpp
* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)
* Update dnn.cpp
* Fix Error in dnn.cpp
* Resolve duplication in conditions in convolution_layer.cpp
* Fixed the issues in the comments
* Fix building issue
* Update tutorial
* Fixed comments
* Address the comments
* Update CMakeLists.txt
* Offer more accurate perf test on native
* Add better perf tests for both native and web
* Modify per tests for better results
* Use more latest version of Electron
* Support latest WebNN Clamp op
* Add definition of HAVE_WEBNN macro
* Support group convolution
* Implement Scale_layer using WebNN
* Add Softmax option for native classification example
* Fix comments
* Fix comments