Alexander Alekhin
5ee7abbe3c
Merge pull request #16088 from alalek:dnn_eltwise_layer_different_src_channels
...
dnn(eltwise): fix handling of different number of channels
* dnn(test): reproducer for Eltwise layer issue from PR16063
* dnn(eltwise): rework support for inputs with different channels
* dnn(eltwise): get rid of finalize(), variableChannels
* dnn(eltwise): update input sorting by number of channels
- do not swap inputs if number of channels are same after truncation
* dnn(test): skip "shortcut" with batch size 2 on MYRIAD targets
5 years ago
Lubov Batanina
7523c777c5
Merge pull request #15537 from l-bat:ngraph
...
* Support nGraph
* Fix resize
5 years ago
Yashas Samaga B L
613c12e590
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
...
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
5 years ago
Dmitry Kurtaev
af61a15839
Fix Darknet eltwise
5 years ago
Dmitry Kurtaev
adbd613660
Enable Eltwise layer with different numbers of inputs channels
5 years ago
Andrew Ryrie
b88435fdc2
dnn: Allow LSTM layer to operate in reverse direction
...
This is useful for bidirectional LSTMs.
5 years ago
Dmitry Kurtaev
ba703157cf
Merge pull request #15063 from dkurt:dnn_ie_ocv_layers
...
* Wrap unsupported by IE layers as custom layers
* Replace pointers to layers blobs to their shapes
* Enable Faster R-CNN with IE backend on CPU
5 years ago
Lubov Batanina
5a6b23e8f3
Support for several min and max sizes in PriorBox layer (Merge pull request #15076 )
...
* Support for several min and max sizes in PriorBox layer
* Fix minSize
* Check size
* Modify initInfEngine
* Fix tests
* Fix IE support
* Add priorbox test
* Remove inputs
5 years ago
Dmitry Kurtaev
77d4e3e8d2
Fix 2019R2 tests
5 years ago
Dmitry Kurtaev
75f4c1abf2
Enable some tests for Inference Engine backend
6 years ago
Alexander Alekhin
894f208de3
dnn(test): replace SkipTestException with tags
6 years ago
Dmitry Kurtaev
eba696a41e
Merge pull request #14792 from dkurt:dnn_ie_min_version_r5
...
* Remove Inference Engine 2018R3 and 2018R4
* Fix 2018R5
6 years ago
Alexander Alekhin
8483801eab
dnn: use OpenVINO 2019R1 defines
6 years ago
Lubov Batanina
7d3d6bc4e2
Merge pull request #13932 from l-bat:MyriadX_master_dldt
...
* Fix precision in tests for MyriadX
* Fix ONNX tests
* Add output range in ONNX tests
* Skip tests on Myriad OpenVINO 2018R5
* Add detect MyriadX
* Add detect MyriadX on OpenVINO R5
* Skip tests on Myriad next version of OpenVINO
* dnn(ie): VPU type from environment variable
* dnn(test): validate VPU type
* dnn(test): update DLIE test skip conditions
6 years ago
Dmitry Kurtaev
ed710eaa1c
Make Inference Engine R3 as a minimal supported version
6 years ago
Dmitry Kurtaev
bc4e471847
Add a mutex for shared Inference Engine plugins
6 years ago
Dmitry Kurtaev
c918ac298c
Fix IE tests
6 years ago
Dmitry Kurtaev
ff775b2e54
Remove ASSERT_ANY_THROW checks fpr Myriad plugin and FP32 networks
6 years ago
Alexander Nesterov
97c3bcb1b7
Added fix for other size
6 years ago
Dmitry Kurtaev
f0ddf302b2
Move Inference Engine to new API
6 years ago
Dmitry Kurtaev
59ce1d80a5
Fix dnn tests for Inference Engine R5
6 years ago
Dmitry Kurtaev
53f6198f27
Minor fixes in IE backend tests
6 years ago
Dmitry Kurtaev
84ce2cc211
Enable some dnn tests according to the new Intel's Inference Engine release (R4)
6 years ago
Dmitry Kurtaev
0d117312c9
DNN_TARGET_FPGA using Intel's Inference Engine
6 years ago
Dmitry Kurtaev
b5c54e447c
Extra hyperparameters for Intel's Inference Engine layers
6 years ago
Alexander Alekhin
96c71dd3d2
dnn: reduce set of ignored warnings
6 years ago
Dmitry Kurtaev
09fa758725
Replace Darknet's Reorg to permute layer
6 years ago
Dmitry Kurtaev
d486204a0d
Merge pull request #12264 from dkurt:dnn_remove_forward_method
...
* Remove a forward method in dnn::Layer
* Add a test
* Fix tests
* Mark multiple dnn::Layer::finalize methods as deprecated
* Replace back dnn's inputBlobs to vector of pointers
* Remove Layer::forward_fallback from CV_OCL_RUN scopes
6 years ago
Dmitry Kurtaev
6ec230480d
Enable Myriad tests with batch size > 1
6 years ago
Dmitry Kurtaev
3e027df583
Enable more deep learning tests using Intel's Inference Engine backend
6 years ago
Alexander Alekhin
d2e08a524e
core: repair CV_Assert() messages
...
Multi-argument CV_Assert() is accessible via CV_Assert_N() (with malformed messages).
6 years ago
Dmitry Kurtaev
faa6c4e1e1
Faster-RCNN anf RFCN models on CPU using Intel's Inference Engine backend.
...
Enable Torch layers tests with Intel's Inference Engine backend.
6 years ago
Dmitry Kurtaev
070393dfda
uint8 inputs for deep learning networks
6 years ago
Dmitry Kurtaev
dcc1beb1f8
Clip kernel for OpenCL PriorBox layer
6 years ago
Alexander Alekhin
e2b5d11290
dnn: allow to use external protobuf
...
"custom layers" feature will not work properly in these builds.
6 years ago
Alexander Alekhin
52b151dceb
dnn(test): use checkMyriadTarget() in Test_Caffe_layers.Conv_Elu test
6 years ago
Dmitry Kurtaev
019c2f2115
Enable more deep learning tests
6 years ago
Dmitry Kurtaev
f25a01bb5a
Disable fusion to output layers
6 years ago
Dmitry Kurtaev
7ed5d85f25
Add Reshape layer tests
7 years ago
Dmitry Kurtaev
346871e27f
Set output layers names and types for models in DLDT's intermediate representation
7 years ago
Dmitry Kurtaev
b11e22c25b
Update Inference Engine tests
7 years ago
Dmitry Kurtaev
e8e9d1d021
Implement Interp layer using Resize layer
7 years ago
Dmitry Kurtaev
4626246087
Add ShuffleChannel layer
7 years ago
Dmitry Kurtaev
40b85c1cd9
Remove undocumented feature to retreive layers outputs by indices
7 years ago
Dmitry Kurtaev
40765c5f8d
Enable SSD models from TensorFlow with OpenCL plugin of Intel's Inference Engine
7 years ago
rockzhan
1187a7fa34
Merge pull request #11649 from rockzhan:dnn_dw_prelu
...
dnn: Fix output mismatch when forward dnn model contain [depthwise conv(group=1) + bn + prelu] (#11649 )
* this can make sure [depthwise conv(group=1) + bn + prelu] output not shift
* add TEST to show the output mismatch in [DWconv+Prelu]
* fix typo
* change loading image to init cvMat directly
* build runtime model, without loading external model
* remove whitespace
* change way to create a cvmat
* add bias_term, add target output
* fix [dwconv + prelu] value mismatch when no optimizations
* fix Test error when change output channels
* add parametric test
* change num_output to group value
* change conv code and change test back
7 years ago
Dmitry Kurtaev
b781ac7346
Make Intel's Inference Engine backend is default if no preferable backend is specified.
7 years ago
Dmitry Kurtaev
ab389142af
Fix multiple networks with Intel's Inference Engine backend
7 years ago
Dmitry Kurtaev
32bab45f81
Fix Inference Engine graphs with fused output layers
7 years ago
Dmitry Kurtaev
4ec456f0a0
Custom layers for deep learning networks ( #11129 )
...
* Custom deep learning layers support
* Stack custom deep learning layers
7 years ago