Implement color conversion from RGB to YUV422 family #24333
Related PR for extra: https://github.com/opencv/opencv_extra/pull/1104
Hi,
This patch provides CPU and OpenCL implementations of color conversions from RGB/BGR to YUV422 family (such as UYVY and YUY2).
These features would come in useful for enabling standard RGB images to be supplied as input to algorithms or networks that make use of images in YUV422 format directly (for example, on resource constrained devices working with camera images captured in YUV422).
The code, tests and perf tests are all written following the existing pattern. There is also an example `bin/example_cpp_cvtColor_RGB2YUV422` that loads an image from disk, converts it from BGR to UYVY and then back to BGR, and displays the result as a visual check that the conversion works.
The OpenCL performance for the forward conversion implemented here is the same as the existing backward conversion on my hardware. The CPU implementation, unfortunately, isn't very optimized as I am not yet familiar with the SIMD code.
Please let me know if I need to fix something or can make other modifications.
Thanks!
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
- [x] The feature is well documented and sample code can be built with the project CMake
Fix truncated sentenced in boxPoints documentation #22975#23662Resolves#22975
Completed the sentence as per the suggestion given in the issue #22975
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
In some situations the last value was missing from the discrete theta
values. Now, the last value is chosen such that it is close to the
user-provided maximum theta, while the distance to pi remains always
at least theta_step/2. This should avoid duplicate detections.
A better way would probably be to use max_theta as is and adjust the
resolution (theta_step) instead, such that the discretization would
always be uniform (in a circular sense) when full angle range is used.
It's not clear how ranges argument should be used in the overload of
calcHist that accepts std::vector. The main overload uses array of
arrays there, while std::vector overload uses a plain array. The code
interprets the vector as a flattened array and rebuilds array of arrays
from it. This is not obvious interpretation, so documentation has been
added to explain the expected usage.
different paddings in cvtColorTwoPlane() for biplane YUV420
* Different paddings support in cvtColorTwoPlane() for biplane YUV420
* Build fix for dispatch case.
* Resoted old behaviour for y.step==uv.step to exclude perf regressions.
Co-authored-by: amir.tulegenov <amir.tulegenov@xperience.ai>
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
* goodFeaturesToTrack returns also corner value
(cherry picked from commit 4a8f06755c)
* Added response to GFTT Detector keypoints
(cherry picked from commit b88fb40c6e)
* Moved corner values to another optional variable to preserve backward compatibility
(cherry picked from commit 6137383d32)
* Removed corners valus from perf tests and better unit tests for corners values
(cherry picked from commit f3d0ef21a7)
* Fixed detector gftt call
(cherry picked from commit be2975553b)
* Restored test_cornerEigenValsVecs
(cherry picked from commit ea3e11811f)
* scaling fixed;
mineigen calculation rolled back;
gftt function overload added (with quality parameter);
perf tests were added for the new api function;
external bindings were added for the function (with different alias);
fixed issues with composition of the output array of the new function (e.g. as requested in comments) ;
added sanity checks in the perf tests;
removed C API changes.
* minor change to GFTTDetector::detect
* substitute ts->printf with EXPECT_LE
* avoid re-allocations
Co-authored-by: Anas <anas.el.amraoui@live.com>
Co-authored-by: amir.tulegenov <amir.tulegenov@xperience.ai>
Return accumulator value in HoughLines algorithm
* try to solve #17050
use cv_wrap_as
add python test
parameters
* review
* move wrapper to imgproc/bindings.hpp
Bit-exact Nearest Neighbor Resizing
* bit exact resizeNN
* change the value of method enum
* add bitexact-nn to ResizeExactTest
* test to compare with non-exact version
* add perf for bit-exact resizenn
* use cvFloor-equivalent
* 1/3 scaling is not stable for floating calculation
* stricter test
* bugfix: broken data in case of 6 or 12bytes elements
* bugfix: broken data in default pix_size
* stricter threshold
* use raw() for floor
* use double instead of int
* follow code reviews
* fewer cases in perf test
* center pixel convention
Clarify component statistics documentation
* Change ConnectedComponentsTypes documentation
Change from "algorithm output formats" to "statistics" because it specifies types of statistics, not formats.
* Documentation: clarify component statistics
Explain that ConnectedComponentTypes selects a statistic.
* imgproc: templmatch: Add support for mask for all methods
Add support for masked template matching. Fix/scrub old implementation
for masked matching, as it did partly not even really do a meaningful
masking, and only supported limited template matching methods.
Add documentation including formulas for masked matching.
* imgproc: test: Add tests for masked template matching
Test accuracy by comparing to naive implementation for one point.
Test compatibility/correctness by comparing results without mask and
with all ones mask.
All tests are done for all methods, all supported depths, and for 1 and
3 channels.
* imgproc: test: templmatch: Add test for crossCorr
Add a test for the crossCorr function in templmatch.cpp. crossCorr() had
to be added to exported functions to be testable.
This test can maybe help to identify the problem with template matching
on MacOSX.
* fix: Fixed wrong evaluations of the MatExpr on Clang
* fix: removed crossCorr from public interface.
If it should be exported, it should be done as separate PR.
Co-authored-by: Vadim Levin <vadim.levin@xperience.ai>