* issue 5769 fixed: cv::stereoRectify fails if given inliers mask of type vector<uchar>
* issue5769 fix using reshape and add regression test
* regression test with outlier detection, testing vector and mat data
* Size comparision of wrong vector within CV_Assert in regression test corrected
* cleanup test code
ISA 2.07 (aka POWER8) effectively extended the expanding multiply
operation to word types. The altivec intrinsics prior to gcc 8 did
not get the update.
Workaround this deficiency similar to other fixes.
This was exposed by commit 33fb253a66
which leverages the int -> dword expanding multiply.
This fixes Issue #15506
* Adding all possible data type interactions to the perf tests since some
use SIMD acceleration and others do not.
* Disabling full tests by default.
* Giving proper names, removing magic numbers and sanity checks of new
performance tests for the integral function.
* Giving proper names, making array static.
* Convert ImgWarp from SSE SIMD to HAL - 2.8x faster on Power (VSX) and 15% speedup on x86
* Change compile flag from CV_SIMD128 to CV_SIMD128_64F for use of v_float64x2 type
* Changing WarpPerspectiveLine from class functions and dispatching to static functions.
* Re-add dynamic runtime and dispatch execution.
* RRestore SSE4_1 optimizations inside opt_SSE4_1 namespace
* Convert lkpyramid from SSE SIMD to HAL - 90% faster on Power (VSX).
* Replace stores with reduce_sum. Rework to handle endianess correctly.
* Fix compiler warnings by casting values explicitly to shorts
* Switch to CV_SIMD128 compiler definition. Unroll loop to 8 elements since we've already loaded the data.
Use 4x FMA chains to sum on SIMD 128 FP64 targets. On
x86 this showed about 1.4x improvement.
For PPC, do a full multiply (32x32->64b), convert to DP
then accumulate. This may be slightly less precise for
some inputs. But is 1.5x faster than the above which
is about 1.5x than the FMA above for ~2.5x speedup.
Convert HOG from SSE SIMD to HAL - 35-45% faster on Power (VSX) (#15199)
* Convert SSE SIMD to HAL. 35-45% improvement for Power (VSX)
* Remove CV_NEON code. Use v_floor instead of 3 lines of code.
* Invert comparison logic to simplify code.
* Change initialization from v_load to constructor type.
* Remove unavoidable print of CV error
The return value covers whether the device exists.
This might be better hidden behind a debug flag, but I couldn't work out how to do that nicely.
* Use `CV_LOG_WARNING` macro to log rather than removing it entirely
* add -Wno-psabi when using GCC 6
* add -Wundef for CUDA 10
* add -Wdeprecated-declarations when using GCC 7
* add -Wstrict-aliasing and -Wtautological-compare for GCC 7
* replace cudaThreadSynchronize with cudaDeviceSynchronize