Added charuco pattern into calibrate.py #23587
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add python sample of how to use Orbbec camera. #23531
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Usage of imread(): magic number 0, unchecked result
* docs: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()
* samples, apps: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()
* tests: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()
* doc/py_tutorials: check imread() result
[teset data in opencv_extra](https://github.com/opencv/opencv_extra/pull/1016)
NanoTrack is an extremely lightweight and fast object-tracking model.
The total size is **1.1 MB**.
And the FPS on M1 chip is **150**, on Raspberry Pi 4 is about **30**. (Float32 CPU only)
With this model, many users can run object tracking on the edge device.
The author of NanoTrack is @HonglinChu.
The original repo is https://github.com/HonglinChu/NanoTrack.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
### Critical bugs fixed:
- `seam_finder.find()` returns None and overwrites `masks_warped`
- `indices` is only 1-dimensional
### Nice-to-have bugs fixed:
- avoid invalid value in sqrt and subsequent runtime warning
- avoid printing help string on each run (use argparse builtin behavior)
### New features:
- added graphcut seam finder support
### Test Summary:
Tested on Ubuntu 20.04 with python 3.8.10 and opencv-python-contrib 4.5.5.62
fix cvtColor-error
* fix gray image channel error
* fix gray image channel error
* fix cvtColor error after the video end
* fix cvtColor error after the video end and change next variable
* fix cvtColor error after the video end
* reset next variable
* fix cvtColor error after the video end
* fix cvtColor error after the video end
without rounding the composed image sizes (variable "sz") they will be odly fractions of a pixel (e.g. (5300.965, 3772.897)) and therefore cause a "TypeError: integer argument expected, got float" in line
456 roi = warper.warpRoi(sz, K, cameras[i].R)
Stitching Detailed Tutorial Improvements
* Add Vertical Wave Correction
The user has the possibility to pass "vert" as wave_correct parameter. However, in the code "cv.detail.WAVE_CORRECT_HORIZ" ist fixed. This change proposes changes so that the wave correction is done vertically if the user passes "vert" as wave_correct parameter. The variable "do_wave_correct" is replaced by None which is passed to the variable "wave_correct" if the user chooses "no" for wave correction.
* Correct fixed conf_thresh
According to the documentation, [cv.detail.leaveBiggestComponent](https://docs.opencv.org/4.5.1/d7/d74/group__stitching__rotation.html#ga855d2fccbcfc3b3477b34d415be5e786) takes features, the pairwise_matches and the conf_threshold as input.
In the tutorial, however, conf_threshold is fixed at 0.3 even though the user can pass conf_thresh as parameter which is 1 by default. Fixing this parameter at 0.3 causes the script to include images into the panorama which are not part of it.
* Error Message for SURF if not implemented
In OpenCV 4.5.1
import cv2 as cv
cv.xfeatures2d_SURF.create
will not create an AttributeError, even if the function is excluded (no nonfree option)
In Line 305 (now 306) however ´finder = FEATURES_FIND_CHOICES[args.features]()´ will raise an
error: OpenCV(4.5.1) ..\opencv_contrib\modules\xfeatures2d\src\surf.cpp:1029: error: (-213:The function/feature is not implemented) This algorithm is patented and is excluded in this configuration; Set OPENCV_ENABLE_NONFREE CMake option and rebuild the library in function 'cv::xfeatures2d::SURF::create'
So we should check with cv.xfeatures2d_SURF.create() correctly if SURF is available
Instead of being a copy of line 76, line 79 instead correctly indicates that it will show a histogram for a gray image in curve mode, as given by the code block at line 103 referencing image "gray" instead of image "im".
Fixes the help for `--features`, previously listed all possible values as default value.
Also adds the default value to the help for two other arguments
* fixed#17044
1. fixed Python part of the tutorial about using OpenCV XML-YAML-JSON I/O functionality from C++ and Python.
2. added startWriteStruct() and endWriteStruct() methods to FileStorage
3. modifed FileStorage::write() methods to make them work well inside sequences, not only mappings.
* try to fix the doc builder
* added Python regression test for FileStorage I/O API ([TODO] iterating through long sequences can be very slow)
* fixed yaml testing
Added a sample file for qrcode detection in python
* sample python file for qrcode detection added in samples/python
* input taken using argparse and the indents were removed
* Removed unused variables
* updated the format and removed unused variables
Removed the use of global variables and used parameterised contructor instead
=set multi detection true by default
* added detection from camera
* samples(python): coding style in qrcode.py